Showing 1,881 - 1,900 results of 7,006 for search 'significantly ((((less decrease) OR (greatest decrease))) OR (((we decrease) OR (nn decrease))))', query time: 0.67s Refine Results
  1. 1881

    Flow diagram. by Barbara Mayr (7065950)

    Published 2024
    “…We found a significant increase both times for miR-103a (glycolysis, %change base: +12%, post +17%), miR-146a (inflammation, %change base: +20%, post +21%), and miR-222 (cardiac remodeling, %change base: +10%, post +21%), while miR-30a (inflammation, %change base: -27%, post: -38%) decreased significantly (all p≤0.043).…”
  2. 1882

    Experimental timeline overview. by Leriana Garcia Reis (12646978)

    Published 2024
    “…Whereas continuous light increased gestation length and tended to increase PN litter growth. Here we report that patterns of grams of feed intake, an indicator of feeding activity, were affected by light, diet, period of the day (day versus night) and physiological state (gestation and lactation), with significant interactions among all these variables (P<0.05). …”
  3. 1883

    Tandem Imaging of Breath Ethanol and Acetaldehyde Based on Multiwavelength Enzymatic Biofluorometry by Kenta Iitani (4175995)

    Published 2024
    “…Reduction of AcH by ADH<sub>RD</sub> consumed NADH, leading to a decrease in blue fluorescence (ex. 340 nm, fl. 490 nm). …”
  4. 1884

    Tandem Imaging of Breath Ethanol and Acetaldehyde Based on Multiwavelength Enzymatic Biofluorometry by Kenta Iitani (4175995)

    Published 2024
    “…Reduction of AcH by ADH<sub>RD</sub> consumed NADH, leading to a decrease in blue fluorescence (ex. 340 nm, fl. 490 nm). …”
  5. 1885

    Tandem Imaging of Breath Ethanol and Acetaldehyde Based on Multiwavelength Enzymatic Biofluorometry by Kenta Iitani (4175995)

    Published 2024
    “…Reduction of AcH by ADH<sub>RD</sub> consumed NADH, leading to a decrease in blue fluorescence (ex. 340 nm, fl. 490 nm). …”
  6. 1886

    Tandem Imaging of Breath Ethanol and Acetaldehyde Based on Multiwavelength Enzymatic Biofluorometry by Kenta Iitani (4175995)

    Published 2024
    “…Reduction of AcH by ADH<sub>RD</sub> consumed NADH, leading to a decrease in blue fluorescence (ex. 340 nm, fl. 490 nm). …”
  7. 1887

    Tandem Imaging of Breath Ethanol and Acetaldehyde Based on Multiwavelength Enzymatic Biofluorometry by Kenta Iitani (4175995)

    Published 2024
    “…Reduction of AcH by ADH<sub>RD</sub> consumed NADH, leading to a decrease in blue fluorescence (ex. 340 nm, fl. 490 nm). …”
  8. 1888

    Tandem Imaging of Breath Ethanol and Acetaldehyde Based on Multiwavelength Enzymatic Biofluorometry by Kenta Iitani (4175995)

    Published 2024
    “…Reduction of AcH by ADH<sub>RD</sub> consumed NADH, leading to a decrease in blue fluorescence (ex. 340 nm, fl. 490 nm). …”
  9. 1889

    Tandem Imaging of Breath Ethanol and Acetaldehyde Based on Multiwavelength Enzymatic Biofluorometry by Kenta Iitani (4175995)

    Published 2024
    “…Reduction of AcH by ADH<sub>RD</sub> consumed NADH, leading to a decrease in blue fluorescence (ex. 340 nm, fl. 490 nm). …”
  10. 1890

    Tandem Imaging of Breath Ethanol and Acetaldehyde Based on Multiwavelength Enzymatic Biofluorometry by Kenta Iitani (4175995)

    Published 2024
    “…Reduction of AcH by ADH<sub>RD</sub> consumed NADH, leading to a decrease in blue fluorescence (ex. 340 nm, fl. 490 nm). …”
  11. 1891

    Tandem Imaging of Breath Ethanol and Acetaldehyde Based on Multiwavelength Enzymatic Biofluorometry by Kenta Iitani (4175995)

    Published 2024
    “…Reduction of AcH by ADH<sub>RD</sub> consumed NADH, leading to a decrease in blue fluorescence (ex. 340 nm, fl. 490 nm). …”
  12. 1892

    Tandem Imaging of Breath Ethanol and Acetaldehyde Based on Multiwavelength Enzymatic Biofluorometry by Kenta Iitani (4175995)

    Published 2024
    “…Reduction of AcH by ADH<sub>RD</sub> consumed NADH, leading to a decrease in blue fluorescence (ex. 340 nm, fl. 490 nm). …”
  13. 1893

    Tandem Imaging of Breath Ethanol and Acetaldehyde Based on Multiwavelength Enzymatic Biofluorometry by Kenta Iitani (4175995)

    Published 2024
    “…Reduction of AcH by ADH<sub>RD</sub> consumed NADH, leading to a decrease in blue fluorescence (ex. 340 nm, fl. 490 nm). …”
  14. 1894

    Tandem Imaging of Breath Ethanol and Acetaldehyde Based on Multiwavelength Enzymatic Biofluorometry by Kenta Iitani (4175995)

    Published 2024
    “…Reduction of AcH by ADH<sub>RD</sub> consumed NADH, leading to a decrease in blue fluorescence (ex. 340 nm, fl. 490 nm). …”
  15. 1895

    Flowchart of the study. by Flavia Furlaneto (20161022)

    Published 2024
    “…At species level, <i>Schaalia</i> spp., <i>Streptococcus gordonii</i>, and <i>Leptotrichia wadei</i> increased in Placebo and decreased in the Probiotic group after treatment. <i>Granulicatella adiacens</i> decreased significantly after the probiotic therapy, while <i>Saccharibacteria</i> (TM7) spp., <i>Solobacterium moorei</i>, and <i>Catonella morbi</i> increased significantly. …”
  16. 1896

    Heat map showing correlations between comet assay parameters, and warm and cold ischemia times. by Miroslava Jandová (22553132)

    Published 2025
    “…<p>Red values are significant at p < 0.05. Negative values mean that there is a “the more, the less” relationship between the quantities, i.e., as one quantity increases, the other quantity decreases. …”
  17. 1897
  18. 1898

    Source data for Fig 2. by Qi Xu (134661)

    Published 2025
    “…Our <i>ex vivo</i> inhibition experiment revealed that L-kynurenine, a product of tryptophan metabolism, inhibits T-cell proliferation and induces T-cell apoptosis, further suppressing T-cell mediated responses against bacteria. Importantly, when we knocked out the <i>Ido1</i> gene or inhibited IDO1 expression using a specific inhibitor 1-MT in mice, we observed a significant enhancement in T-cell mediated responses against hv<i>Kp</i>. …”
  19. 1899

    Source data for lung metabolomics. by Qi Xu (134661)

    Published 2025
    “…Our <i>ex vivo</i> inhibition experiment revealed that L-kynurenine, a product of tryptophan metabolism, inhibits T-cell proliferation and induces T-cell apoptosis, further suppressing T-cell mediated responses against bacteria. Importantly, when we knocked out the <i>Ido1</i> gene or inhibited IDO1 expression using a specific inhibitor 1-MT in mice, we observed a significant enhancement in T-cell mediated responses against hv<i>Kp</i>. …”
  20. 1900

    Source data for Fig 5. by Qi Xu (134661)

    Published 2025
    “…Our <i>ex vivo</i> inhibition experiment revealed that L-kynurenine, a product of tryptophan metabolism, inhibits T-cell proliferation and induces T-cell apoptosis, further suppressing T-cell mediated responses against bacteria. Importantly, when we knocked out the <i>Ido1</i> gene or inhibited IDO1 expression using a specific inhibitor 1-MT in mice, we observed a significant enhancement in T-cell mediated responses against hv<i>Kp</i>. …”