Showing 2,021 - 2,040 results of 4,625 for search 'significantly ((((less decrease) OR (larger decrease))) OR (((nn decrease) OR (mean decrease))))', query time: 0.59s Refine Results
  1. 2021

    Schematic diagram of the basic principles of SVR. by Jintao Li (448681)

    Published 2024
    “…<div><p>Accurate medium- to long-term runoff forecasting is of great significance for flood control, drought mitigation, comprehensive water resource management, and ecological restoration. …”
  2. 2022
  3. 2023
  4. 2024

    Structure diagram of ensemble model. by Hongqi Wang (2208238)

    Published 2024
    “…Comparative analysis highlights the significant enhancement in prediction accuracy achieved by the proposed ensemble model over single machine learning models, with root mean square error (RMSE) values below 0.05 and mean absolute percentage error (MAPE) values remaining under 2.5% in both frozen and unfrozen states. …”
  5. 2025

    Fitting formula parameter table. by Hongqi Wang (2208238)

    Published 2024
    “…Comparative analysis highlights the significant enhancement in prediction accuracy achieved by the proposed ensemble model over single machine learning models, with root mean square error (RMSE) values below 0.05 and mean absolute percentage error (MAPE) values remaining under 2.5% in both frozen and unfrozen states. …”
  6. 2026

    Test plan. by Hongqi Wang (2208238)

    Published 2024
    “…Comparative analysis highlights the significant enhancement in prediction accuracy achieved by the proposed ensemble model over single machine learning models, with root mean square error (RMSE) values below 0.05 and mean absolute percentage error (MAPE) values remaining under 2.5% in both frozen and unfrozen states. …”
  7. 2027

    Fitting surface parameters. by Hongqi Wang (2208238)

    Published 2024
    “…Comparative analysis highlights the significant enhancement in prediction accuracy achieved by the proposed ensemble model over single machine learning models, with root mean square error (RMSE) values below 0.05 and mean absolute percentage error (MAPE) values remaining under 2.5% in both frozen and unfrozen states. …”
  8. 2028

    Model generalisation validation error analysis. by Hongqi Wang (2208238)

    Published 2024
    “…Comparative analysis highlights the significant enhancement in prediction accuracy achieved by the proposed ensemble model over single machine learning models, with root mean square error (RMSE) values below 0.05 and mean absolute percentage error (MAPE) values remaining under 2.5% in both frozen and unfrozen states. …”
  9. 2029

    Empirical model prediction error analysis. by Hongqi Wang (2208238)

    Published 2024
    “…Comparative analysis highlights the significant enhancement in prediction accuracy achieved by the proposed ensemble model over single machine learning models, with root mean square error (RMSE) values below 0.05 and mean absolute percentage error (MAPE) values remaining under 2.5% in both frozen and unfrozen states. …”
  10. 2030

    Fitting curve parameters. by Hongqi Wang (2208238)

    Published 2024
    “…Comparative analysis highlights the significant enhancement in prediction accuracy achieved by the proposed ensemble model over single machine learning models, with root mean square error (RMSE) values below 0.05 and mean absolute percentage error (MAPE) values remaining under 2.5% in both frozen and unfrozen states. …”
  11. 2031

    Test instrument. by Hongqi Wang (2208238)

    Published 2024
    “…Comparative analysis highlights the significant enhancement in prediction accuracy achieved by the proposed ensemble model over single machine learning models, with root mean square error (RMSE) values below 0.05 and mean absolute percentage error (MAPE) values remaining under 2.5% in both frozen and unfrozen states. …”
  12. 2032

    Empirical model establishment process. by Hongqi Wang (2208238)

    Published 2024
    “…Comparative analysis highlights the significant enhancement in prediction accuracy achieved by the proposed ensemble model over single machine learning models, with root mean square error (RMSE) values below 0.05 and mean absolute percentage error (MAPE) values remaining under 2.5% in both frozen and unfrozen states. …”
  13. 2033

    Model prediction error trend chart. by Hongqi Wang (2208238)

    Published 2024
    “…Comparative analysis highlights the significant enhancement in prediction accuracy achieved by the proposed ensemble model over single machine learning models, with root mean square error (RMSE) values below 0.05 and mean absolute percentage error (MAPE) values remaining under 2.5% in both frozen and unfrozen states. …”
  14. 2034

    Basic physical parameters of red clay. by Hongqi Wang (2208238)

    Published 2024
    “…Comparative analysis highlights the significant enhancement in prediction accuracy achieved by the proposed ensemble model over single machine learning models, with root mean square error (RMSE) values below 0.05 and mean absolute percentage error (MAPE) values remaining under 2.5% in both frozen and unfrozen states. …”
  15. 2035

    BP neural network structure diagram. by Hongqi Wang (2208238)

    Published 2024
    “…Comparative analysis highlights the significant enhancement in prediction accuracy achieved by the proposed ensemble model over single machine learning models, with root mean square error (RMSE) values below 0.05 and mean absolute percentage error (MAPE) values remaining under 2.5% in both frozen and unfrozen states. …”
  16. 2036

    Structure diagram of GBDT model. by Hongqi Wang (2208238)

    Published 2024
    “…Comparative analysis highlights the significant enhancement in prediction accuracy achieved by the proposed ensemble model over single machine learning models, with root mean square error (RMSE) values below 0.05 and mean absolute percentage error (MAPE) values remaining under 2.5% in both frozen and unfrozen states. …”
  17. 2037

    Model prediction error analysis index. by Hongqi Wang (2208238)

    Published 2024
    “…Comparative analysis highlights the significant enhancement in prediction accuracy achieved by the proposed ensemble model over single machine learning models, with root mean square error (RMSE) values below 0.05 and mean absolute percentage error (MAPE) values remaining under 2.5% in both frozen and unfrozen states. …”
  18. 2038

    Fitting curve parameter table. by Hongqi Wang (2208238)

    Published 2024
    “…Comparative analysis highlights the significant enhancement in prediction accuracy achieved by the proposed ensemble model over single machine learning models, with root mean square error (RMSE) values below 0.05 and mean absolute percentage error (MAPE) values remaining under 2.5% in both frozen and unfrozen states. …”
  19. 2039

    Model prediction error analysis. by Hongqi Wang (2208238)

    Published 2024
    “…Comparative analysis highlights the significant enhancement in prediction accuracy achieved by the proposed ensemble model over single machine learning models, with root mean square error (RMSE) values below 0.05 and mean absolute percentage error (MAPE) values remaining under 2.5% in both frozen and unfrozen states. …”
  20. 2040