Showing 2,581 - 2,600 results of 18,406 for search 'significantly ((((less decrease) OR (teer decrease))) OR (((mean decrease) OR (a decrease))))', query time: 0.49s Refine Results
  1. 2581
  2. 2582
  3. 2583
  4. 2584
  5. 2585
  6. 2586
  7. 2587
  8. 2588
  9. 2589
  10. 2590

    A Comparison of Pediatric Prehospital Opioid Encounters and Social Vulnerability by Stephen Sandelich (19991783)

    Published 2024
    “…The analysis demonstrated that as socioeconomic status (SES) improves, the likelihood of opioid-related activations increases significantly supported by a significant negative linear trend (Estimate = −0.2971, SE = 0.1172, z = −2.54, <i>p</i> = 0.0112. …”
  11. 2591
  12. 2592
  13. 2593
  14. 2594
  15. 2595
  16. 2596

    Structure diagram of ensemble model. by Hongqi Wang (2208238)

    Published 2024
    “…Comparative analysis highlights the significant enhancement in prediction accuracy achieved by the proposed ensemble model over single machine learning models, with root mean square error (RMSE) values below 0.05 and mean absolute percentage error (MAPE) values remaining under 2.5% in both frozen and unfrozen states. …”
  17. 2597

    Fitting formula parameter table. by Hongqi Wang (2208238)

    Published 2024
    “…Comparative analysis highlights the significant enhancement in prediction accuracy achieved by the proposed ensemble model over single machine learning models, with root mean square error (RMSE) values below 0.05 and mean absolute percentage error (MAPE) values remaining under 2.5% in both frozen and unfrozen states. …”
  18. 2598

    Test plan. by Hongqi Wang (2208238)

    Published 2024
    “…Comparative analysis highlights the significant enhancement in prediction accuracy achieved by the proposed ensemble model over single machine learning models, with root mean square error (RMSE) values below 0.05 and mean absolute percentage error (MAPE) values remaining under 2.5% in both frozen and unfrozen states. …”
  19. 2599

    Fitting surface parameters. by Hongqi Wang (2208238)

    Published 2024
    “…Comparative analysis highlights the significant enhancement in prediction accuracy achieved by the proposed ensemble model over single machine learning models, with root mean square error (RMSE) values below 0.05 and mean absolute percentage error (MAPE) values remaining under 2.5% in both frozen and unfrozen states. …”
  20. 2600

    Model generalisation validation error analysis. by Hongqi Wang (2208238)

    Published 2024
    “…Comparative analysis highlights the significant enhancement in prediction accuracy achieved by the proposed ensemble model over single machine learning models, with root mean square error (RMSE) values below 0.05 and mean absolute percentage error (MAPE) values remaining under 2.5% in both frozen and unfrozen states. …”