Showing 4,261 - 4,280 results of 18,442 for search 'significantly ((((linear decrease) OR (((teer decrease) OR (a decrease))))) OR (mean decrease))', query time: 0.36s Refine Results
  1. 4261
  2. 4262

    The protocol of the maximal cycle-ergometer test. by Kazufumi Hisamoto (21416905)

    Published 2025
    “…Therefore, we aimed to investigate whether mild hyperbaric hyperoxia enhances aerobic capacity and decreases cardiopulmonary stress during exercise with a particular focus on the ventilatory threshold (VT). …”
  3. 4263
  4. 4264
  5. 4265
  6. 4266

    Impact of sludge dosage on HPST. by Peng Zhao (128233)

    Published 2025
    “…The model optimization and experimental validation showed that the optimal HPST conditions for treating domestic sewage were as follows: the dosage of polyaluminum chloride (PAC) was 1.70 g/L, cationic polyacrylamide (CPAM) dosage was 2.35 mg/L, sewage pH was maintained at 8.0, sludge dosage was 10 mL/L, stirring time lasted for 5 minutes, and settling time lasted for 30 minutes. As a result of these optimized conditions, the turbidity of treated sewage decreased to 1.19 NTU.…”
  7. 4267

    Impact of settling time on HPST. by Peng Zhao (128233)

    Published 2025
    “…The model optimization and experimental validation showed that the optimal HPST conditions for treating domestic sewage were as follows: the dosage of polyaluminum chloride (PAC) was 1.70 g/L, cationic polyacrylamide (CPAM) dosage was 2.35 mg/L, sewage pH was maintained at 8.0, sludge dosage was 10 mL/L, stirring time lasted for 5 minutes, and settling time lasted for 30 minutes. As a result of these optimized conditions, the turbidity of treated sewage decreased to 1.19 NTU.…”
  8. 4268

    ANOVAs for the response surface of Eq (2). by Peng Zhao (128233)

    Published 2025
    “…The model optimization and experimental validation showed that the optimal HPST conditions for treating domestic sewage were as follows: the dosage of polyaluminum chloride (PAC) was 1.70 g/L, cationic polyacrylamide (CPAM) dosage was 2.35 mg/L, sewage pH was maintained at 8.0, sludge dosage was 10 mL/L, stirring time lasted for 5 minutes, and settling time lasted for 30 minutes. As a result of these optimized conditions, the turbidity of treated sewage decreased to 1.19 NTU.…”
  9. 4269

    Impact of CPAM dosage on HPST. by Peng Zhao (128233)

    Published 2025
    “…The model optimization and experimental validation showed that the optimal HPST conditions for treating domestic sewage were as follows: the dosage of polyaluminum chloride (PAC) was 1.70 g/L, cationic polyacrylamide (CPAM) dosage was 2.35 mg/L, sewage pH was maintained at 8.0, sludge dosage was 10 mL/L, stirring time lasted for 5 minutes, and settling time lasted for 30 minutes. As a result of these optimized conditions, the turbidity of treated sewage decreased to 1.19 NTU.…”
  10. 4270

    Impact of sewage pH on HPST. by Peng Zhao (128233)

    Published 2025
    “…The model optimization and experimental validation showed that the optimal HPST conditions for treating domestic sewage were as follows: the dosage of polyaluminum chloride (PAC) was 1.70 g/L, cationic polyacrylamide (CPAM) dosage was 2.35 mg/L, sewage pH was maintained at 8.0, sludge dosage was 10 mL/L, stirring time lasted for 5 minutes, and settling time lasted for 30 minutes. As a result of these optimized conditions, the turbidity of treated sewage decreased to 1.19 NTU.…”
  11. 4271

    Impact of PAC dosage on HPST. by Peng Zhao (128233)

    Published 2025
    “…The model optimization and experimental validation showed that the optimal HPST conditions for treating domestic sewage were as follows: the dosage of polyaluminum chloride (PAC) was 1.70 g/L, cationic polyacrylamide (CPAM) dosage was 2.35 mg/L, sewage pH was maintained at 8.0, sludge dosage was 10 mL/L, stirring time lasted for 5 minutes, and settling time lasted for 30 minutes. As a result of these optimized conditions, the turbidity of treated sewage decreased to 1.19 NTU.…”
  12. 4272
  13. 4273
  14. 4274
  15. 4275
  16. 4276
  17. 4277
  18. 4278
  19. 4279
  20. 4280