Search alternatives:
longer decrease » largest decrease (Expand Search)
linear decrease » linear increase (Expand Search)
larger decrease » marked decrease (Expand Search)
longer decrease » largest decrease (Expand Search)
linear decrease » linear increase (Expand Search)
larger decrease » marked decrease (Expand Search)
-
1081
Research methodology flow diagram.
Published 2025“…Results show that SIDFM reduces navigation errors by 12.09% at low acceleration and 11.43% at high acceleration while also significantly decreasing positioning errors. These improvements enhance the stability, precision, and safety of AGVs in dynamic manufacturing environments. …”
-
1082
Positioning error analysis.
Published 2025“…Results show that SIDFM reduces navigation errors by 12.09% at low acceleration and 11.43% at high acceleration while also significantly decreasing positioning errors. These improvements enhance the stability, precision, and safety of AGVs in dynamic manufacturing environments. …”
-
1083
Error-Bar graph.
Published 2025“…Results show that SIDFM reduces navigation errors by 12.09% at low acceleration and 11.43% at high acceleration while also significantly decreasing positioning errors. These improvements enhance the stability, precision, and safety of AGVs in dynamic manufacturing environments. …”
-
1084
A Hydrate-Bearing Sediment Gas Replacement Mechanical Behavior Regulation Mechanism and Slope Stability Analysis
Published 2025“…As saturation increases, the Γ value of the critical state line decreases, while the λ value increases. (3) For slope simulations, increased hydrate saturation significantly raises the safety factor for gentler slopes, while the reinforcing effect of gas replacement is weaker for steeper slopes with higher saturation.…”
-
1085
A Hydrate-Bearing Sediment Gas Replacement Mechanical Behavior Regulation Mechanism and Slope Stability Analysis
Published 2025“…As saturation increases, the Γ value of the critical state line decreases, while the λ value increases. (3) For slope simulations, increased hydrate saturation significantly raises the safety factor for gentler slopes, while the reinforcing effect of gas replacement is weaker for steeper slopes with higher saturation.…”
-
1086
Principal coordinates analysis (PCoA).
Published 2025“…Analysis of bacterial abundance revealed a shift in trends as the disease combined from control to NSESKD and SESKD group, respectively, across 7 genera: <i><i>Actinobacillus</i></i>, <i>TM7x</i>, <i><i>Capnocytophaga</i></i>, <i><i>Neisseria</i></i>, and <i><i>Leptotrichia</i></i> increased in abundance, while <i><i>Actinomyces</i></i> and <i><i>Atopobium</i></i> decreased. Linear discriminant analysis effect size (LEfSe) identified <i><i>Leptotrichia</i></i> as a potential biomarker for ESKD (both with and without sarcopenia).…”
-
1087
Experimental and Numerical Investigations of Soot Formation in the Laminar to Turbulent Transition of an Acetylene Diffusion Flame
Published 2025“…Results from different regimes indicate the following: (1) In the laminar state, <i>ṁ</i><sub>soot</sub> increased linearly with <i>Re</i>, with a growth rate positively correlated with the tube diameter. (2) After entering the transitional state, <i>ṁ</i><sub>soot</sub> decreased exponentially by over 95%; <i>T</i> gradually increased by 150 K; and both SPL and the standard deviation of <i>T</i> (σ<sub><i>T</i></sub>) initially rose and then declined. (3) After entering the fully turbulent state, SPL increased again whereas σ<sub><i>T</i></sub> stabilized at 14. …”
-
1088
-
1089
-
1090
Mexican warning label system.
Published 2024“…Similarly, the FOPWL decreased the perceived healthiness of both nectar with “excess sugars” and nectar with NNS. …”
-
1091
S1 Dataset -
Published 2024“…Similarly, the FOPWL decreased the perceived healthiness of both nectar with “excess sugars” and nectar with NNS. …”
-
1092
Images with FOPWL by time of data collection.
Published 2024“…Similarly, the FOPWL decreased the perceived healthiness of both nectar with “excess sugars” and nectar with NNS. …”
-
1093
-
1094
Benchmark regression results.
Published 2024“…The findings reveal that: (1) At this stage, digital transformation in listed companies effectively reduces their carbon intensity, but the relationship between the two is not linear; instead, it exhibits a U-shaped trajectory, initially decreasing then increasing. (2) Analysis of mechanism indicates that costs associated with environmental governance and innovations in green technology serve as critical pathways through which corporate digital transformation influences carbon intensity. (3) The analysis of driving effect suggests that the digital transformation significantly curtails the carbon emission intensity of both upstream and downstream enterprises as well as those within the same industry and geographical region, through industrial linkage and the cohort effect. (4) Heterogeneity analysis elucidates that the digital transformation of enterprises in regions with stronger government environmental regulations has a markedly more pronounced effect on reducing the carbon emission intensity. …”
-
1095
Heterogeneity test.
Published 2024“…The findings reveal that: (1) At this stage, digital transformation in listed companies effectively reduces their carbon intensity, but the relationship between the two is not linear; instead, it exhibits a U-shaped trajectory, initially decreasing then increasing. (2) Analysis of mechanism indicates that costs associated with environmental governance and innovations in green technology serve as critical pathways through which corporate digital transformation influences carbon intensity. (3) The analysis of driving effect suggests that the digital transformation significantly curtails the carbon emission intensity of both upstream and downstream enterprises as well as those within the same industry and geographical region, through industrial linkage and the cohort effect. (4) Heterogeneity analysis elucidates that the digital transformation of enterprises in regions with stronger government environmental regulations has a markedly more pronounced effect on reducing the carbon emission intensity. …”
-
1096
S1 File -
Published 2024“…The findings reveal that: (1) At this stage, digital transformation in listed companies effectively reduces their carbon intensity, but the relationship between the two is not linear; instead, it exhibits a U-shaped trajectory, initially decreasing then increasing. (2) Analysis of mechanism indicates that costs associated with environmental governance and innovations in green technology serve as critical pathways through which corporate digital transformation influences carbon intensity. (3) The analysis of driving effect suggests that the digital transformation significantly curtails the carbon emission intensity of both upstream and downstream enterprises as well as those within the same industry and geographical region, through industrial linkage and the cohort effect. (4) Heterogeneity analysis elucidates that the digital transformation of enterprises in regions with stronger government environmental regulations has a markedly more pronounced effect on reducing the carbon emission intensity. …”
-
1097
The robustness test.
Published 2024“…The findings reveal that: (1) At this stage, digital transformation in listed companies effectively reduces their carbon intensity, but the relationship between the two is not linear; instead, it exhibits a U-shaped trajectory, initially decreasing then increasing. (2) Analysis of mechanism indicates that costs associated with environmental governance and innovations in green technology serve as critical pathways through which corporate digital transformation influences carbon intensity. (3) The analysis of driving effect suggests that the digital transformation significantly curtails the carbon emission intensity of both upstream and downstream enterprises as well as those within the same industry and geographical region, through industrial linkage and the cohort effect. (4) Heterogeneity analysis elucidates that the digital transformation of enterprises in regions with stronger government environmental regulations has a markedly more pronounced effect on reducing the carbon emission intensity. …”
-
1098
Mechanistic testing.
Published 2024“…The findings reveal that: (1) At this stage, digital transformation in listed companies effectively reduces their carbon intensity, but the relationship between the two is not linear; instead, it exhibits a U-shaped trajectory, initially decreasing then increasing. (2) Analysis of mechanism indicates that costs associated with environmental governance and innovations in green technology serve as critical pathways through which corporate digital transformation influences carbon intensity. (3) The analysis of driving effect suggests that the digital transformation significantly curtails the carbon emission intensity of both upstream and downstream enterprises as well as those within the same industry and geographical region, through industrial linkage and the cohort effect. (4) Heterogeneity analysis elucidates that the digital transformation of enterprises in regions with stronger government environmental regulations has a markedly more pronounced effect on reducing the carbon emission intensity. …”
-
1099
Descriptive statistics of variables.
Published 2024“…The findings reveal that: (1) At this stage, digital transformation in listed companies effectively reduces their carbon intensity, but the relationship between the two is not linear; instead, it exhibits a U-shaped trajectory, initially decreasing then increasing. (2) Analysis of mechanism indicates that costs associated with environmental governance and innovations in green technology serve as critical pathways through which corporate digital transformation influences carbon intensity. (3) The analysis of driving effect suggests that the digital transformation significantly curtails the carbon emission intensity of both upstream and downstream enterprises as well as those within the same industry and geographical region, through industrial linkage and the cohort effect. (4) Heterogeneity analysis elucidates that the digital transformation of enterprises in regions with stronger government environmental regulations has a markedly more pronounced effect on reducing the carbon emission intensity. …”
-
1100
Endogenous treatment.
Published 2024“…The findings reveal that: (1) At this stage, digital transformation in listed companies effectively reduces their carbon intensity, but the relationship between the two is not linear; instead, it exhibits a U-shaped trajectory, initially decreasing then increasing. (2) Analysis of mechanism indicates that costs associated with environmental governance and innovations in green technology serve as critical pathways through which corporate digital transformation influences carbon intensity. (3) The analysis of driving effect suggests that the digital transformation significantly curtails the carbon emission intensity of both upstream and downstream enterprises as well as those within the same industry and geographical region, through industrial linkage and the cohort effect. (4) Heterogeneity analysis elucidates that the digital transformation of enterprises in regions with stronger government environmental regulations has a markedly more pronounced effect on reducing the carbon emission intensity. …”