Showing 8,921 - 8,940 results of 18,720 for search 'significantly ((((lower decrease) OR (((greatest decrease) OR (a decrease))))) OR (mean decrease))', query time: 0.75s Refine Results
  1. 8921

    Table 1_Perioperative neurocognitive disorder in colorectal cancer surgery: a systematic review of incidence, mechanisms, and interventions.doc by Xiujin Huang (22637270)

    Published 2025
    “…Background<p>Perioperative neurocognitive disorder (PND) represents a significant impediment to postoperative recovery in patients undergoing colorectal cancer surgery, particularly among the elderly. …”
  2. 8922

    PCA-CGAN model parameter settings. by Chao Tang (10925)

    Published 2025
    “…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”
  3. 8923

    MIT-BIH dataset proportion analysis chart. by Chao Tang (10925)

    Published 2025
    “…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”
  4. 8924

    Wavelet transform preprocessing results. by Chao Tang (10925)

    Published 2025
    “…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”
  5. 8925

    PCAECG_GAN. by Chao Tang (10925)

    Published 2025
    “…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”
  6. 8926

    MIT dataset expansion quantities and Proportions. by Chao Tang (10925)

    Published 2025
    “…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”
  7. 8927

    Experimental hardware and software environment. by Chao Tang (10925)

    Published 2025
    “…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”
  8. 8928

    PCA-CGAN K-fold experiment table. by Chao Tang (10925)

    Published 2025
    “…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”
  9. 8929

    Classification model parameter settings. by Chao Tang (10925)

    Published 2025
    “…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”
  10. 8930

    MIT-BIH expanded dataset proportion chart. by Chao Tang (10925)

    Published 2025
    “…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”
  11. 8931

    AUROC Graphs of RF Model and ResNet. by Chao Tang (10925)

    Published 2025
    “…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”
  12. 8932

    PCA-CGAN Model Workflow Diagram. by Chao Tang (10925)

    Published 2025
    “…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”
  13. 8933

    Structural Diagrams of RF Model and ResNet Model. by Chao Tang (10925)

    Published 2025
    “…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”
  14. 8934

    PCA-CGAN model convergence curve. by Chao Tang (10925)

    Published 2025
    “…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”
  15. 8935

    PCA-CGAN Structure Diagram. by Chao Tang (10925)

    Published 2025
    “…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”
  16. 8936

    Comparison of Model Five-classification Results. by Chao Tang (10925)

    Published 2025
    “…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”
  17. 8937

    PCAECG-GAN K-fold experiment table. by Chao Tang (10925)

    Published 2025
    “…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”
  18. 8938

    PCA-CGAN Pseudocode Table. by Chao Tang (10925)

    Published 2025
    “…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”
  19. 8939

    PCA-CGAN Ablation Experiment Results. by Chao Tang (10925)

    Published 2025
    “…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”
  20. 8940

    Modulation of renal inflammation and tubular injury by calcitriol in patients with early diabetic kidney disease: a randomized controlled trial by Pringgodigdo Nugroho (15460802)

    Published 2025
    “…Although UACR decreased more in the calcitriol group, the difference was not statistically significant (<i>p</i> = 0.099). …”