Showing 8,861 - 8,880 results of 18,676 for search 'significantly ((((lower decrease) OR (((nn decrease) OR (a decrease))))) OR (mean decrease))', query time: 0.61s Refine Results
  1. 8861

    Data Sheet 1_Dysregulation of melatonin rhythm in Parkinson’s and Huntington’s disease: a systematic review and meta-analysis.docx by Reema Priyanka Suram (22399759)

    Published 2025
    “…In manifest HD, both amplitude [RoM = 0.92, 95% CI (0.81 to 1.02); p = 0.00] and acrophase [RoM = 0.92, 95% CI (0.07 to 1.78); p = 0.03] significantly decreased. PD patients with sleep disorders had significantly higher melatonin concentrations than the non-sleep disorder group, with a significant test group difference of p = 0.00. …”
  2. 8862

    Table 1_Perioperative neurocognitive disorder in colorectal cancer surgery: a systematic review of incidence, mechanisms, and interventions.doc by Xiujin Huang (22637270)

    Published 2025
    “…Background<p>Perioperative neurocognitive disorder (PND) represents a significant impediment to postoperative recovery in patients undergoing colorectal cancer surgery, particularly among the elderly. …”
  3. 8863

    PCA-CGAN model parameter settings. by Chao Tang (10925)

    Published 2025
    “…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”
  4. 8864

    MIT-BIH dataset proportion analysis chart. by Chao Tang (10925)

    Published 2025
    “…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”
  5. 8865

    Wavelet transform preprocessing results. by Chao Tang (10925)

    Published 2025
    “…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”
  6. 8866

    PCAECG_GAN. by Chao Tang (10925)

    Published 2025
    “…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”
  7. 8867

    MIT dataset expansion quantities and Proportions. by Chao Tang (10925)

    Published 2025
    “…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”
  8. 8868

    Experimental hardware and software environment. by Chao Tang (10925)

    Published 2025
    “…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”
  9. 8869

    PCA-CGAN K-fold experiment table. by Chao Tang (10925)

    Published 2025
    “…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”
  10. 8870

    Classification model parameter settings. by Chao Tang (10925)

    Published 2025
    “…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”
  11. 8871

    MIT-BIH expanded dataset proportion chart. by Chao Tang (10925)

    Published 2025
    “…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”
  12. 8872

    AUROC Graphs of RF Model and ResNet. by Chao Tang (10925)

    Published 2025
    “…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”
  13. 8873

    PCA-CGAN Model Workflow Diagram. by Chao Tang (10925)

    Published 2025
    “…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”
  14. 8874

    Structural Diagrams of RF Model and ResNet Model. by Chao Tang (10925)

    Published 2025
    “…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”
  15. 8875

    PCA-CGAN model convergence curve. by Chao Tang (10925)

    Published 2025
    “…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”
  16. 8876

    PCA-CGAN Structure Diagram. by Chao Tang (10925)

    Published 2025
    “…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”
  17. 8877

    Comparison of Model Five-classification Results. by Chao Tang (10925)

    Published 2025
    “…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”
  18. 8878

    PCAECG-GAN K-fold experiment table. by Chao Tang (10925)

    Published 2025
    “…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”
  19. 8879

    PCA-CGAN Pseudocode Table. by Chao Tang (10925)

    Published 2025
    “…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”
  20. 8880

    PCA-CGAN Ablation Experiment Results. by Chao Tang (10925)

    Published 2025
    “…This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). …”