Search alternatives:
linear decrease » linear increase (Expand Search)
lower decrease » larger decrease (Expand Search), teer decrease (Expand Search), showed decreased (Expand Search)
we decrease » _ decrease (Expand Search), nn decrease (Expand Search), mean decrease (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
linear decrease » linear increase (Expand Search)
lower decrease » larger decrease (Expand Search), teer decrease (Expand Search), showed decreased (Expand Search)
we decrease » _ decrease (Expand Search), nn decrease (Expand Search), mean decrease (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
-
5081
Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces
Published 2025“…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …”
-
5082
Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces
Published 2025“…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …”
-
5083
Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces
Published 2025“…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …”
-
5084
Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces
Published 2025“…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …”
-
5085
Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces
Published 2025“…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …”
-
5086
Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces
Published 2025“…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …”
-
5087
Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces
Published 2025“…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …”
-
5088
Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces
Published 2025“…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …”
-
5089
Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces
Published 2025“…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …”
-
5090
Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces
Published 2025“…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …”
-
5091
-
5092
-
5093
-
5094
-
5095
-
5096
-
5097
-
5098
-
5099
-
5100
Bacterial strains and plasmids.
Published 2025“…This activation altered virulence factors, including reduced biofilm formation, particularly in the 14028Δ<i>bipA</i> strain. Furthermore, the SL1344Δ<i>bipA</i> and 14028Δ<i>bipA</i> strains exhibited significantly decreased swimming motility at 20°C compared to 37°C, confirmed by microscopic observation showing fewer flagella at 20°C. …”