Showing 17,721 - 17,740 results of 18,582 for search 'significantly ((((lower decrease) OR (((we decrease) OR (a decrease))))) OR (linear decrease))', query time: 0.56s Refine Results
  1. 17721

    Different controller performance indicators 2. by Wanjun Zhang (496858)

    Published 2025
    “…The results demonstrate that the self-correcting fuzzy PID control significantly optimizes key performance metrics: overshoot (reduced by 21.3%), settling time (shortened by 34.7%), and steady-rate error (decreased by 18.9%), outperforming both traditional PID and fuzzy PID methods in concentration and pH regulation. …”
  2. 17722

    Control principle diagram. by Wanjun Zhang (496858)

    Published 2025
    “…The results demonstrate that the self-correcting fuzzy PID control significantly optimizes key performance metrics: overshoot (reduced by 21.3%), settling time (shortened by 34.7%), and steady-rate error (decreased by 18.9%), outperforming both traditional PID and fuzzy PID methods in concentration and pH regulation. …”
  3. 17723

    Δk<sub>p</sub> Fuzzy control rule. by Wanjun Zhang (496858)

    Published 2025
    “…The results demonstrate that the self-correcting fuzzy PID control significantly optimizes key performance metrics: overshoot (reduced by 21.3%), settling time (shortened by 34.7%), and steady-rate error (decreased by 18.9%), outperforming both traditional PID and fuzzy PID methods in concentration and pH regulation. …”
  4. 17724

    Image2_Comprehensive analysis of Hibisci mutabilis Folium extract’s mechanisms in alleviating UV-induced skin photoaging through enhanced network pharmacology and experimental vali... by Wenyuan Chen (1770583)

    Published 2024
    “…GO enrichment and KEGG pathway analyses revealed a focus on inflammatory signaling pathways. In vitro experiments showed that EHMF significantly reduced UV-induced inflammatory factors in HaCaT cells and improved cell survival rates. …”
  5. 17725

    DataSheet1_Comprehensive analysis of Hibisci mutabilis Folium extract’s mechanisms in alleviating UV-induced skin photoaging through enhanced network pharmacology and experimental... by Wenyuan Chen (1770583)

    Published 2024
    “…GO enrichment and KEGG pathway analyses revealed a focus on inflammatory signaling pathways. In vitro experiments showed that EHMF significantly reduced UV-induced inflammatory factors in HaCaT cells and improved cell survival rates. …”
  6. 17726

    Data Sheet 1_Administration of anticoagulation strategies for portal vein thrombosis in cirrhosis: network meta-analysis.docx by Hui-Jun Li (1480486)

    Published 2025
    “…Warfarin and TIPS were recommended for reducing the frequency of bleeding events, while LMWH plus warfarin and DOACs proved to be most effective in decreasing the rate of major bleeding events. Warfarin, heparin plus DOACs plus warfarin, and DOACs demonstrated the most significant reduction in mortality rates, highlighting its potential as an effective intervention. …”
  7. 17727

    Image 1_Polygonatum sibiricum polysaccharides enhance pancreatic β-cell function in diabetic zebrafish by mitigating mitochondrial oxidative damage via the AMPK-SIRT1 pathway.tif by Fan Lin (625737)

    Published 2025
    “…Background<p>Mitochondrial oxidative damage in pancreatic β-cells is a key contributor to diabetes pathogenesis, particularly under hyperglycemic conditions. …”
  8. 17728

    Table 3_Polygonatum sibiricum polysaccharides enhance pancreatic β-cell function in diabetic zebrafish by mitigating mitochondrial oxidative damage via the AMPK-SIRT1 pathway.xlsx by Fan Lin (625737)

    Published 2025
    “…Background<p>Mitochondrial oxidative damage in pancreatic β-cells is a key contributor to diabetes pathogenesis, particularly under hyperglycemic conditions. …”
  9. 17729

    Data Sheet 4_Polygonatum sibiricum polysaccharides enhance pancreatic β-cell function in diabetic zebrafish by mitigating mitochondrial oxidative damage via the AMPK-SIRT1 pathway.... by Fan Lin (625737)

    Published 2025
    “…Background<p>Mitochondrial oxidative damage in pancreatic β-cells is a key contributor to diabetes pathogenesis, particularly under hyperglycemic conditions. …”
  10. 17730

    Table 2_Polygonatum sibiricum polysaccharides enhance pancreatic β-cell function in diabetic zebrafish by mitigating mitochondrial oxidative damage via the AMPK-SIRT1 pathway.xlsx by Fan Lin (625737)

    Published 2025
    “…Background<p>Mitochondrial oxidative damage in pancreatic β-cells is a key contributor to diabetes pathogenesis, particularly under hyperglycemic conditions. …”
  11. 17731

    Table 1_Polygonatum sibiricum polysaccharides enhance pancreatic β-cell function in diabetic zebrafish by mitigating mitochondrial oxidative damage via the AMPK-SIRT1 pathway.xlsx by Fan Lin (625737)

    Published 2025
    “…Background<p>Mitochondrial oxidative damage in pancreatic β-cells is a key contributor to diabetes pathogenesis, particularly under hyperglycemic conditions. …”
  12. 17732

    Table 1_FBR2 modulates ferroptosis via the SIRT3/p53 pathway to ameliorate pulmonary fibrosis.docx by Yu Cheng (136592)

    Published 2025
    “…However, Feibi Recipe No. 2 (FBR2), a clinically validated traditional Chinese medicine formula, exhibits potential as an IPF treatment.…”
  13. 17733

    Data Sheet 1_Polygonatum sibiricum polysaccharides enhance pancreatic β-cell function in diabetic zebrafish by mitigating mitochondrial oxidative damage via the AMPK-SIRT1 pathway.... by Fan Lin (625737)

    Published 2025
    “…Background<p>Mitochondrial oxidative damage in pancreatic β-cells is a key contributor to diabetes pathogenesis, particularly under hyperglycemic conditions. …”
  14. 17734

    Table 2_FBR2 modulates ferroptosis via the SIRT3/p53 pathway to ameliorate pulmonary fibrosis.xlsx by Yu Cheng (136592)

    Published 2025
    “…However, Feibi Recipe No. 2 (FBR2), a clinically validated traditional Chinese medicine formula, exhibits potential as an IPF treatment.…”
  15. 17735

    Efficient Dehydrogenation of Propane to Propene over PtIn Nanoclusters Encapsulated in Hollow-Structured Silicalite‑1 by Shiying Li (381113)

    Published 2024
    “…The propane conversion and propene selectivity reach ∼45–47.5% and ∼99%, respectively, at 547 °C at least within 167.6 h. As a result, it displays a significantly higher specific activity for C<sub>3</sub>H<sub>6</sub> formation (0.37–0.59 s<sup>–1</sup>) than Pt@S1, Pt@S1–H, and other reported Pt-based catalysts. …”
  16. 17736

    Data Sheet 2_Polygonatum sibiricum polysaccharides enhance pancreatic β-cell function in diabetic zebrafish by mitigating mitochondrial oxidative damage via the AMPK-SIRT1 pathway.... by Fan Lin (625737)

    Published 2025
    “…Background<p>Mitochondrial oxidative damage in pancreatic β-cells is a key contributor to diabetes pathogenesis, particularly under hyperglycemic conditions. …”
  17. 17737

    Table 2_Polygonatum sibiricum polysaccharides enhance pancreatic β-cell function in diabetic zebrafish by mitigating mitochondrial oxidative damage via the AMPK-SIRT1 pathway.xlsx by Fan Lin (625737)

    Published 2025
    “…Background<p>Mitochondrial oxidative damage in pancreatic β-cells is a key contributor to diabetes pathogenesis, particularly under hyperglycemic conditions. …”
  18. 17738

    Table 4_Polygonatum sibiricum polysaccharides enhance pancreatic β-cell function in diabetic zebrafish by mitigating mitochondrial oxidative damage via the AMPK-SIRT1 pathway.xlsx by Fan Lin (625737)

    Published 2025
    “…Background<p>Mitochondrial oxidative damage in pancreatic β-cells is a key contributor to diabetes pathogenesis, particularly under hyperglycemic conditions. …”
  19. 17739

    Image 1_Augmentation of bone formation by sympathectomy in rats as evaluated by [99mTc]Tc-MDP.png by Zili Cai (15238729)

    Published 2025
    “…</p>Materials and methods<p>Twenty rats were randomly assigned to a superior cervical ganglionectomy (SCGx) group (n = 10) or a sham-operated control group (n = 10). …”
  20. 17740

    Table 4_Polygonatum sibiricum polysaccharides enhance pancreatic β-cell function in diabetic zebrafish by mitigating mitochondrial oxidative damage via the AMPK-SIRT1 pathway.xlsx by Fan Lin (625737)

    Published 2025
    “…Background<p>Mitochondrial oxidative damage in pancreatic β-cells is a key contributor to diabetes pathogenesis, particularly under hyperglycemic conditions. …”