بدائل البحث:
linear decrease » linear increase (توسيع البحث)
lower decrease » larger decrease (توسيع البحث), teer decrease (توسيع البحث), showed decreased (توسيع البحث)
we decrease » _ decrease (توسيع البحث), a decrease (توسيع البحث), mean decrease (توسيع البحث)
nn decrease » _ decrease (توسيع البحث), a decrease (توسيع البحث), mean decrease (توسيع البحث)
linear decrease » linear increase (توسيع البحث)
lower decrease » larger decrease (توسيع البحث), teer decrease (توسيع البحث), showed decreased (توسيع البحث)
we decrease » _ decrease (توسيع البحث), a decrease (توسيع البحث), mean decrease (توسيع البحث)
nn decrease » _ decrease (توسيع البحث), a decrease (توسيع البحث), mean decrease (توسيع البحث)
-
3161
Alkenyl/Thiol Co-Functionalized Titanium-Oxo Nanoclusters Enable Synergistic Lithography for Enhanced Resolution and Sensitivity
منشور في 2025"…Such dual cross-linkable group functionalization brought additional thiol–ene click reactions upon exposure to enhance intercluster polymerization, which significantly improved the lithography sensitivity of TOCs, with the required exposure energy being reduced by over 70% (decreasing from >1000 μC/cm<sup>2</sup> of alkenyl-TOC to <300 μC/cm<sup>2</sup> of alkenyl/thiol-TOC). …"
-
3162
Defect-Triggered Reversible Phase Transformation for Boosting Electrochemical Performance of Coordination Polymers
منشور في 2024"…Contrary to this common sense, here we demonstrate that both implanting defects and eliminating defects can significantly boost the specific capacitance of the defect-engineered CPs (DECPs), which are about 1.23 and 1.62 times that of the pristine CP, respectively, without loss of rate capability even after 10,000 charge–discharge cycles. …"
-
3163
Defect-Triggered Reversible Phase Transformation for Boosting Electrochemical Performance of Coordination Polymers
منشور في 2024"…Contrary to this common sense, here we demonstrate that both implanting defects and eliminating defects can significantly boost the specific capacitance of the defect-engineered CPs (DECPs), which are about 1.23 and 1.62 times that of the pristine CP, respectively, without loss of rate capability even after 10,000 charge–discharge cycles. …"
-
3164
The overall framework of CARAFE.
منشور في 2025"…Secondly, a lightweight convolutional module is introduced to replace the standard convolutions in the Efficient Long-range Aggregation Network (ELAN-A) module, and the channel pruning techniques are applied to further decrease the model’s complexity. Finally, the experiment significantly enhanced the efficiency of feature extraction and the detection accuracy of the model algorithm through the integration of the Dynamic Head (DyHead) module, the Content-Aware Re-Assembly of Features (CARAFE) module, and the incorporation of knowledge distillation techniques. …"
-
3165
KPD-YOLOv7-GD network structure diagram.
منشور في 2025"…Secondly, a lightweight convolutional module is introduced to replace the standard convolutions in the Efficient Long-range Aggregation Network (ELAN-A) module, and the channel pruning techniques are applied to further decrease the model’s complexity. Finally, the experiment significantly enhanced the efficiency of feature extraction and the detection accuracy of the model algorithm through the integration of the Dynamic Head (DyHead) module, the Content-Aware Re-Assembly of Features (CARAFE) module, and the incorporation of knowledge distillation techniques. …"
-
3166
Comparison experiment of accuracy improvement.
منشور في 2025"…Secondly, a lightweight convolutional module is introduced to replace the standard convolutions in the Efficient Long-range Aggregation Network (ELAN-A) module, and the channel pruning techniques are applied to further decrease the model’s complexity. Finally, the experiment significantly enhanced the efficiency of feature extraction and the detection accuracy of the model algorithm through the integration of the Dynamic Head (DyHead) module, the Content-Aware Re-Assembly of Features (CARAFE) module, and the incorporation of knowledge distillation techniques. …"
-
3167
Comparison of different pruning rates.
منشور في 2025"…Secondly, a lightweight convolutional module is introduced to replace the standard convolutions in the Efficient Long-range Aggregation Network (ELAN-A) module, and the channel pruning techniques are applied to further decrease the model’s complexity. Finally, the experiment significantly enhanced the efficiency of feature extraction and the detection accuracy of the model algorithm through the integration of the Dynamic Head (DyHead) module, the Content-Aware Re-Assembly of Features (CARAFE) module, and the incorporation of knowledge distillation techniques. …"
-
3168
Comparison of experimental results at ablation.
منشور في 2025"…Secondly, a lightweight convolutional module is introduced to replace the standard convolutions in the Efficient Long-range Aggregation Network (ELAN-A) module, and the channel pruning techniques are applied to further decrease the model’s complexity. Finally, the experiment significantly enhanced the efficiency of feature extraction and the detection accuracy of the model algorithm through the integration of the Dynamic Head (DyHead) module, the Content-Aware Re-Assembly of Features (CARAFE) module, and the incorporation of knowledge distillation techniques. …"
-
3169
Result of comparison of different lightweight.
منشور في 2025"…Secondly, a lightweight convolutional module is introduced to replace the standard convolutions in the Efficient Long-range Aggregation Network (ELAN-A) module, and the channel pruning techniques are applied to further decrease the model’s complexity. Finally, the experiment significantly enhanced the efficiency of feature extraction and the detection accuracy of the model algorithm through the integration of the Dynamic Head (DyHead) module, the Content-Aware Re-Assembly of Features (CARAFE) module, and the incorporation of knowledge distillation techniques. …"
-
3170
DyHead Structure.
منشور في 2025"…Secondly, a lightweight convolutional module is introduced to replace the standard convolutions in the Efficient Long-range Aggregation Network (ELAN-A) module, and the channel pruning techniques are applied to further decrease the model’s complexity. Finally, the experiment significantly enhanced the efficiency of feature extraction and the detection accuracy of the model algorithm through the integration of the Dynamic Head (DyHead) module, the Content-Aware Re-Assembly of Features (CARAFE) module, and the incorporation of knowledge distillation techniques. …"
-
3171
The parameters of the training phase.
منشور في 2025"…Secondly, a lightweight convolutional module is introduced to replace the standard convolutions in the Efficient Long-range Aggregation Network (ELAN-A) module, and the channel pruning techniques are applied to further decrease the model’s complexity. Finally, the experiment significantly enhanced the efficiency of feature extraction and the detection accuracy of the model algorithm through the integration of the Dynamic Head (DyHead) module, the Content-Aware Re-Assembly of Features (CARAFE) module, and the incorporation of knowledge distillation techniques. …"
-
3172
Structure of GSConv network.
منشور في 2025"…Secondly, a lightweight convolutional module is introduced to replace the standard convolutions in the Efficient Long-range Aggregation Network (ELAN-A) module, and the channel pruning techniques are applied to further decrease the model’s complexity. Finally, the experiment significantly enhanced the efficiency of feature extraction and the detection accuracy of the model algorithm through the integration of the Dynamic Head (DyHead) module, the Content-Aware Re-Assembly of Features (CARAFE) module, and the incorporation of knowledge distillation techniques. …"
-
3173
Comparison experiment of accuracy improvement.
منشور في 2025"…Secondly, a lightweight convolutional module is introduced to replace the standard convolutions in the Efficient Long-range Aggregation Network (ELAN-A) module, and the channel pruning techniques are applied to further decrease the model’s complexity. Finally, the experiment significantly enhanced the efficiency of feature extraction and the detection accuracy of the model algorithm through the integration of the Dynamic Head (DyHead) module, the Content-Aware Re-Assembly of Features (CARAFE) module, and the incorporation of knowledge distillation techniques. …"
-
3174
Improved model distillation structure.
منشور في 2025"…Secondly, a lightweight convolutional module is introduced to replace the standard convolutions in the Efficient Long-range Aggregation Network (ELAN-A) module, and the channel pruning techniques are applied to further decrease the model’s complexity. Finally, the experiment significantly enhanced the efficiency of feature extraction and the detection accuracy of the model algorithm through the integration of the Dynamic Head (DyHead) module, the Content-Aware Re-Assembly of Features (CARAFE) module, and the incorporation of knowledge distillation techniques. …"
-
3175
S1 Graphical abstract -
منشور في 2024"…</p><p>Conclusions</p><p>In patients with MVD-STEMI, the incidence of MACEs was lower in FCR than in FIR, and the decrease was particularly significant in the DM cohort. …"
-
3176
Procedural characteristics.
منشور في 2024"…</p><p>Conclusions</p><p>In patients with MVD-STEMI, the incidence of MACEs was lower in FCR than in FIR, and the decrease was particularly significant in the DM cohort. …"
-
3177
Clinical characteristics.
منشور في 2024"…</p><p>Conclusions</p><p>In patients with MVD-STEMI, the incidence of MACEs was lower in FCR than in FIR, and the decrease was particularly significant in the DM cohort. …"
-
3178
Study flowchart.
منشور في 2024"…</p><p>Conclusions</p><p>In patients with MVD-STEMI, the incidence of MACEs was lower in FCR than in FIR, and the decrease was particularly significant in the DM cohort. …"
-
3179
Data.
منشور في 2024"…</p><p>Conclusions</p><p>In patients with MVD-STEMI, the incidence of MACEs was lower in FCR than in FIR, and the decrease was particularly significant in the DM cohort. …"
-
3180
Excel data extraction.
منشور في 2025"…Early detection and treatment of precancerous cervical lesions and human papillomavirus (HPV) infection are strongly advised to decrease the incidence of cervical cancer and death. …"