Showing 3,721 - 3,740 results of 10,836 for search 'significantly ((((lower decrease) OR (((we decrease) OR (nn decrease))))) OR (mean decrease))', query time: 0.51s Refine Results
  1. 3721

    <b> </b> Energy efficiency and gas volume comparison. by Ning Zuo (17295415)

    Published 2025
    “…CO₂ yield was higher in the control group at lower temperatures, while the integrated system consistently produced more biochar and biogas. …”
  2. 3722

    Model validation of kinetic parameters. by Ning Zuo (17295415)

    Published 2025
    “…CO₂ yield was higher in the control group at lower temperatures, while the integrated system consistently produced more biochar and biogas. …”
  3. 3723

    Dataset visualization diagram. by Yaojun Zhang (389482)

    Published 2025
    “…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
  4. 3724

    Dataset sample images. by Yaojun Zhang (389482)

    Published 2025
    “…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
  5. 3725

    Performance comparison of different models. by Yaojun Zhang (389482)

    Published 2025
    “…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
  6. 3726

    C2f and BC2f module structure diagrams. by Yaojun Zhang (389482)

    Published 2025
    “…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
  7. 3727

    YOLOv8n detection results diagram. by Yaojun Zhang (389482)

    Published 2025
    “…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
  8. 3728

    YOLOv8n-BWG model structure diagram. by Yaojun Zhang (389482)

    Published 2025
    “…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
  9. 3729

    BiFormer structure diagram. by Yaojun Zhang (389482)

    Published 2025
    “…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
  10. 3730

    YOLOv8n-BWG detection results diagram. by Yaojun Zhang (389482)

    Published 2025
    “…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
  11. 3731

    GSConv module structure diagram. by Yaojun Zhang (389482)

    Published 2025
    “…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
  12. 3732

    Performance comparison of three loss functions. by Yaojun Zhang (389482)

    Published 2025
    “…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
  13. 3733

    mAP0.5 Curves of various models. by Yaojun Zhang (389482)

    Published 2025
    “…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
  14. 3734

    Network loss function change diagram. by Yaojun Zhang (389482)

    Published 2025
    “…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
  15. 3735

    Comparative diagrams of different indicators. by Yaojun Zhang (389482)

    Published 2025
    “…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
  16. 3736

    YOLOv8n structure diagram. by Yaojun Zhang (389482)

    Published 2025
    “…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
  17. 3737

    Geometric model of the binocular system. by Yaojun Zhang (389482)

    Published 2025
    “…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
  18. 3738

    Enhanced dataset sample images. by Yaojun Zhang (389482)

    Published 2025
    “…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
  19. 3739
  20. 3740

    Graphical abstract regarding program development. by Ana Beato (20489933)

    Published 2024
    “…<div><p>The stigma surrounding mental health remains a significant barrier to help-seeking and well-being in youth populations. …”