Search alternatives:
greatest decrease » treatment decreased (Expand Search), greater increase (Expand Search)
lower decrease » larger decrease (Expand Search), linear decrease (Expand Search), we decrease (Expand Search)
teer decrease » mean decrease (Expand Search), greater decrease (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
greatest decrease » treatment decreased (Expand Search), greater increase (Expand Search)
lower decrease » larger decrease (Expand Search), linear decrease (Expand Search), we decrease (Expand Search)
teer decrease » mean decrease (Expand Search), greater decrease (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
-
2141
Lipidomic analysis of epidermis using LC-IMS-CID-MS reveals major changes in CKO// epidermis.
Published 2025“…(p< 0.05 ANOVA). See (A) for lipid class nomenclature. (E) Dendrogram showing all 247 significantly changed lipids in CKO epidermis. …”
-
2142
-
2143
S1A Fig raw image.
Published 2025“…<i><i>Ctsz</i></i> disturbance within murine macrophages enhances production of chemokine (C-X-C motif) ligand 1 (CXCL1), a known biomarker of TB severity. From a Ugandan household contact study, we identify significant associations between <i>CTSZ</i> variants and TB disease severity. …”
-
2144
-
2145
-
2146
-
2147
-
2148
-
2149
Position of each slice of anthracite.
Published 2025“…The CO<sub>2</sub>/CH<sub>4</sub>/N<sub>2</sub> gas molecule adsorption capacity of the anthracite macromolecular structure model decreases with increasing temperature. The increase in temperature has the greatest influence on the CO<sub>2</sub> absorption capacity, followed by the CH<sub>4</sub> and N<sub>2</sub> adsorption capacities. …”
-
2150
Minimal data set.
Published 2025“…The CO<sub>2</sub>/CH<sub>4</sub>/N<sub>2</sub> gas molecule adsorption capacity of the anthracite macromolecular structure model decreases with increasing temperature. The increase in temperature has the greatest influence on the CO<sub>2</sub> absorption capacity, followed by the CH<sub>4</sub> and N<sub>2</sub> adsorption capacities. …”
-
2151
Schematic of the experiment apparatus.
Published 2025“…The CO<sub>2</sub>/CH<sub>4</sub>/N<sub>2</sub> gas molecule adsorption capacity of the anthracite macromolecular structure model decreases with increasing temperature. The increase in temperature has the greatest influence on the CO<sub>2</sub> absorption capacity, followed by the CH<sub>4</sub> and N<sub>2</sub> adsorption capacities. …”
-
2152
-
2153
-
2154
Physicochemical properties of CO<sub>2</sub>, CH<sub>4</sub> and N<sub>2</sub>.
Published 2025“…The CO<sub>2</sub>/CH<sub>4</sub>/N<sub>2</sub> gas molecule adsorption capacity of the anthracite macromolecular structure model decreases with increasing temperature. The increase in temperature has the greatest influence on the CO<sub>2</sub> absorption capacity, followed by the CH<sub>4</sub> and N<sub>2</sub> adsorption capacities. …”
-
2155
-
2156
-
2157
-
2158
Toroidal metamaterials.
Published 2025“…These findings suggest a significant decrease in the risk of electromagnetic exposure to human subjects by miniaturization. …”
-
2159
Human tissue dielectric parameters.
Published 2025“…These findings suggest a significant decrease in the risk of electromagnetic exposure to human subjects by miniaturization. …”
-
2160
Human head modeling.
Published 2025“…These findings suggest a significant decrease in the risk of electromagnetic exposure to human subjects by miniaturization. …”