Search alternatives:
lower decrease » larger decrease (Expand Search), linear decrease (Expand Search), teer decrease (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
lower decrease » larger decrease (Expand Search), linear decrease (Expand Search), teer decrease (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
-
6381
SARIMA predicts season components.
Published 2025“…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …”
-
6382
BWO-BiLSTM model prediction results.
Published 2025“…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …”
-
6383
Bi-LSTM architecture diagram.
Published 2025“…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …”
-
6384
STL Linear Combination Forecast Graph.
Published 2025“…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …”
-
6385
LOSS curves for BWO-BiLSTM model training.
Published 2025“…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …”
-
6386
Analysis of STL-PCA prediction results.
Published 2025“…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …”
-
6387
Accumulated contribution rate of PCA.
Published 2025“…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …”
-
6388
Figure of ablation experiment.
Published 2025“…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …”
-
6389
Flowchart of the STL-PCA-BWO-BiLSTM model.
Published 2025“…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …”
-
6390
Parameter optimization results of BiLSTM.
Published 2025“…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …”
-
6391
Descriptive statistical analysis of data.
Published 2025“…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …”
-
6392
The MAE value of the model under raw data.
Published 2025“…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …”
-
6393
Three error values under raw data.
Published 2025“…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …”
-
6394
Decomposition of time scries plot.
Published 2025“…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …”
-
6395
-
6396
-
6397
-
6398
Estimated results of the mediation effect.
Published 2024“…Besides the result from the double threshold model reveals a complex, nonlinear relationship between trade openness and CO2 emissions in Africa. …”
-
6399
Panel unit root test result.
Published 2024“…Besides the result from the double threshold model reveals a complex, nonlinear relationship between trade openness and CO2 emissions in Africa. …”
-
6400
Kernel density estimation for CO2.
Published 2024“…Besides the result from the double threshold model reveals a complex, nonlinear relationship between trade openness and CO2 emissions in Africa. …”