Search alternatives:
larger decrease » marked decrease (Expand Search)
lower decrease » linear decrease (Expand Search), teer decrease (Expand Search), we decrease (Expand Search)
larger decrease » marked decrease (Expand Search)
lower decrease » linear decrease (Expand Search), teer decrease (Expand Search), we decrease (Expand Search)
-
3321
Network loss function change diagram.
Published 2025“…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
-
3322
Comparative diagrams of different indicators.
Published 2025“…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
-
3323
YOLOv8n structure diagram.
Published 2025“…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
-
3324
Geometric model of the binocular system.
Published 2025“…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
-
3325
Enhanced dataset sample images.
Published 2025“…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
-
3326
-
3327
-
3328
Baseline analysis, nominal factors.
Published 2025“…Conversely, the occurrence of myasthenic crisis and current MG-ADL scores were lower in 2018. Regarding treatment, the utilization of tacrolimus, plasma exchange (PE), and intravenous immunoglobulin (IVIg) significantly increased between 2006 and 2018. …”
-
3329
Minimal dataset for the study.
Published 2025“…Conversely, the occurrence of myasthenic crisis and current MG-ADL scores were lower in 2018. Regarding treatment, the utilization of tacrolimus, plasma exchange (PE), and intravenous immunoglobulin (IVIg) significantly increased between 2006 and 2018. …”
-
3330
Baseline analysis, continuous factors.
Published 2025“…Conversely, the occurrence of myasthenic crisis and current MG-ADL scores were lower in 2018. Regarding treatment, the utilization of tacrolimus, plasma exchange (PE), and intravenous immunoglobulin (IVIg) significantly increased between 2006 and 2018. …”
-
3331
Multivariable analysis between 2006 and 2018.
Published 2025“…Conversely, the occurrence of myasthenic crisis and current MG-ADL scores were lower in 2018. Regarding treatment, the utilization of tacrolimus, plasma exchange (PE), and intravenous immunoglobulin (IVIg) significantly increased between 2006 and 2018. …”
-
3332
Accuracy on the ERAM task.
Published 2024“…However, coefficients for estrogen were significant for both emotion recognition tasks. Higher within-person levels of estrogen predicted lower accuracy, whereas higher between-person estrogen levels predicted greater accuracy. …”
-
3333
-
3334
-
3335
-
3336
-
3337
-
3338
-
3339
-
3340