Search alternatives:
linear decrease » linear increase (Expand Search)
lower decrease » larger decrease (Expand Search), we decrease (Expand Search), showed decreased (Expand Search)
teer decrease » greater decrease (Expand Search)
linear decrease » linear increase (Expand Search)
lower decrease » larger decrease (Expand Search), we decrease (Expand Search), showed decreased (Expand Search)
teer decrease » greater decrease (Expand Search)
-
2841
-
2842
-
2843
-
2844
Simulation datasets.
Published 2025“…These results offer significant theoretical guidance for the design and improvement of needle-free injection.…”
-
2845
Renamed 05c60.
Published 2025“…The study reveals three key findings. (1) Contribution levels of China’s eight comprehensive economic zones to national standard development have significantly increased. The Northern Coastal comprehensive economic zone has the highest contribution levels, followed by the Eastern and Southern Coastal zones, whereas the Northwestern and Northeastern zones have lower contribution levels. (2) The overall regional disparity in national standard development contribution levels is decreasing, with the largest intraregional disparities found in the Northern and Southern Coastal zones. …”
-
2846
Region Division.
Published 2025“…The study reveals three key findings. (1) Contribution levels of China’s eight comprehensive economic zones to national standard development have significantly increased. The Northern Coastal comprehensive economic zone has the highest contribution levels, followed by the Eastern and Southern Coastal zones, whereas the Northwestern and Northeastern zones have lower contribution levels. (2) The overall regional disparity in national standard development contribution levels is decreasing, with the largest intraregional disparities found in the Northern and Southern Coastal zones. …”
-
2847
Parameters of screws.
Published 2025“…<div><p>Background</p><p>Lateral mass screw (LMS) is a more widely adopted method for posterior cervical spine fixation than the cervical pedicle screw (CPS). Despite its lower pullout strength, the insertions of LMS are more reproducible and have a lower risk. …”
-
2848
The overall framework of CARAFE.
Published 2025“…Secondly, a lightweight convolutional module is introduced to replace the standard convolutions in the Efficient Long-range Aggregation Network (ELAN-A) module, and the channel pruning techniques are applied to further decrease the model’s complexity. Finally, the experiment significantly enhanced the efficiency of feature extraction and the detection accuracy of the model algorithm through the integration of the Dynamic Head (DyHead) module, the Content-Aware Re-Assembly of Features (CARAFE) module, and the incorporation of knowledge distillation techniques. …”
-
2849
KPD-YOLOv7-GD network structure diagram.
Published 2025“…Secondly, a lightweight convolutional module is introduced to replace the standard convolutions in the Efficient Long-range Aggregation Network (ELAN-A) module, and the channel pruning techniques are applied to further decrease the model’s complexity. Finally, the experiment significantly enhanced the efficiency of feature extraction and the detection accuracy of the model algorithm through the integration of the Dynamic Head (DyHead) module, the Content-Aware Re-Assembly of Features (CARAFE) module, and the incorporation of knowledge distillation techniques. …”
-
2850
Comparison experiment of accuracy improvement.
Published 2025“…Secondly, a lightweight convolutional module is introduced to replace the standard convolutions in the Efficient Long-range Aggregation Network (ELAN-A) module, and the channel pruning techniques are applied to further decrease the model’s complexity. Finally, the experiment significantly enhanced the efficiency of feature extraction and the detection accuracy of the model algorithm through the integration of the Dynamic Head (DyHead) module, the Content-Aware Re-Assembly of Features (CARAFE) module, and the incorporation of knowledge distillation techniques. …”
-
2851
Comparison of different pruning rates.
Published 2025“…Secondly, a lightweight convolutional module is introduced to replace the standard convolutions in the Efficient Long-range Aggregation Network (ELAN-A) module, and the channel pruning techniques are applied to further decrease the model’s complexity. Finally, the experiment significantly enhanced the efficiency of feature extraction and the detection accuracy of the model algorithm through the integration of the Dynamic Head (DyHead) module, the Content-Aware Re-Assembly of Features (CARAFE) module, and the incorporation of knowledge distillation techniques. …”
-
2852
Comparison of experimental results at ablation.
Published 2025“…Secondly, a lightweight convolutional module is introduced to replace the standard convolutions in the Efficient Long-range Aggregation Network (ELAN-A) module, and the channel pruning techniques are applied to further decrease the model’s complexity. Finally, the experiment significantly enhanced the efficiency of feature extraction and the detection accuracy of the model algorithm through the integration of the Dynamic Head (DyHead) module, the Content-Aware Re-Assembly of Features (CARAFE) module, and the incorporation of knowledge distillation techniques. …”
-
2853
Result of comparison of different lightweight.
Published 2025“…Secondly, a lightweight convolutional module is introduced to replace the standard convolutions in the Efficient Long-range Aggregation Network (ELAN-A) module, and the channel pruning techniques are applied to further decrease the model’s complexity. Finally, the experiment significantly enhanced the efficiency of feature extraction and the detection accuracy of the model algorithm through the integration of the Dynamic Head (DyHead) module, the Content-Aware Re-Assembly of Features (CARAFE) module, and the incorporation of knowledge distillation techniques. …”
-
2854
DyHead Structure.
Published 2025“…Secondly, a lightweight convolutional module is introduced to replace the standard convolutions in the Efficient Long-range Aggregation Network (ELAN-A) module, and the channel pruning techniques are applied to further decrease the model’s complexity. Finally, the experiment significantly enhanced the efficiency of feature extraction and the detection accuracy of the model algorithm through the integration of the Dynamic Head (DyHead) module, the Content-Aware Re-Assembly of Features (CARAFE) module, and the incorporation of knowledge distillation techniques. …”
-
2855
The parameters of the training phase.
Published 2025“…Secondly, a lightweight convolutional module is introduced to replace the standard convolutions in the Efficient Long-range Aggregation Network (ELAN-A) module, and the channel pruning techniques are applied to further decrease the model’s complexity. Finally, the experiment significantly enhanced the efficiency of feature extraction and the detection accuracy of the model algorithm through the integration of the Dynamic Head (DyHead) module, the Content-Aware Re-Assembly of Features (CARAFE) module, and the incorporation of knowledge distillation techniques. …”
-
2856
Structure of GSConv network.
Published 2025“…Secondly, a lightweight convolutional module is introduced to replace the standard convolutions in the Efficient Long-range Aggregation Network (ELAN-A) module, and the channel pruning techniques are applied to further decrease the model’s complexity. Finally, the experiment significantly enhanced the efficiency of feature extraction and the detection accuracy of the model algorithm through the integration of the Dynamic Head (DyHead) module, the Content-Aware Re-Assembly of Features (CARAFE) module, and the incorporation of knowledge distillation techniques. …”
-
2857
Comparison experiment of accuracy improvement.
Published 2025“…Secondly, a lightweight convolutional module is introduced to replace the standard convolutions in the Efficient Long-range Aggregation Network (ELAN-A) module, and the channel pruning techniques are applied to further decrease the model’s complexity. Finally, the experiment significantly enhanced the efficiency of feature extraction and the detection accuracy of the model algorithm through the integration of the Dynamic Head (DyHead) module, the Content-Aware Re-Assembly of Features (CARAFE) module, and the incorporation of knowledge distillation techniques. …”
-
2858
Improved model distillation structure.
Published 2025“…Secondly, a lightweight convolutional module is introduced to replace the standard convolutions in the Efficient Long-range Aggregation Network (ELAN-A) module, and the channel pruning techniques are applied to further decrease the model’s complexity. Finally, the experiment significantly enhanced the efficiency of feature extraction and the detection accuracy of the model algorithm through the integration of the Dynamic Head (DyHead) module, the Content-Aware Re-Assembly of Features (CARAFE) module, and the incorporation of knowledge distillation techniques. …”
-
2859
Clinical characteristics of the study population.
Published 2025“…The total number of patients who met with P-TAs was 26,842, with a 43.1% reduction from 17,105–9,737. A decrease was observed across all age groups; however, the rate was lower in the geriatric and severely injured groups. …”
-
2860