Search alternatives:
linear decrease » linear increase (Expand Search)
lower decrease » larger decrease (Expand Search), teer decrease (Expand Search), we decrease (Expand Search)
linear decrease » linear increase (Expand Search)
lower decrease » larger decrease (Expand Search), teer decrease (Expand Search), we decrease (Expand Search)
-
3521
mAP0.5 Curves of various models.
Published 2025“…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
-
3522
Network loss function change diagram.
Published 2025“…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
-
3523
Comparative diagrams of different indicators.
Published 2025“…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
-
3524
YOLOv8n structure diagram.
Published 2025“…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
-
3525
Geometric model of the binocular system.
Published 2025“…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
-
3526
Enhanced dataset sample images.
Published 2025“…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
-
3527
-
3528
-
3529
Baseline analysis, nominal factors.
Published 2025“…Conversely, the occurrence of myasthenic crisis and current MG-ADL scores were lower in 2018. Regarding treatment, the utilization of tacrolimus, plasma exchange (PE), and intravenous immunoglobulin (IVIg) significantly increased between 2006 and 2018. …”
-
3530
Minimal dataset for the study.
Published 2025“…Conversely, the occurrence of myasthenic crisis and current MG-ADL scores were lower in 2018. Regarding treatment, the utilization of tacrolimus, plasma exchange (PE), and intravenous immunoglobulin (IVIg) significantly increased between 2006 and 2018. …”
-
3531
Baseline analysis, continuous factors.
Published 2025“…Conversely, the occurrence of myasthenic crisis and current MG-ADL scores were lower in 2018. Regarding treatment, the utilization of tacrolimus, plasma exchange (PE), and intravenous immunoglobulin (IVIg) significantly increased between 2006 and 2018. …”
-
3532
Multivariable analysis between 2006 and 2018.
Published 2025“…Conversely, the occurrence of myasthenic crisis and current MG-ADL scores were lower in 2018. Regarding treatment, the utilization of tacrolimus, plasma exchange (PE), and intravenous immunoglobulin (IVIg) significantly increased between 2006 and 2018. …”
-
3533
Navigation error analysis.
Published 2025“…Results show that SIDFM reduces navigation errors by 12.09% at low acceleration and 11.43% at high acceleration while also significantly decreasing positioning errors. These improvements enhance the stability, precision, and safety of AGVs in dynamic manufacturing environments. …”
-
3534
Summary of related works.
Published 2025“…Results show that SIDFM reduces navigation errors by 12.09% at low acceleration and 11.43% at high acceleration while also significantly decreasing positioning errors. These improvements enhance the stability, precision, and safety of AGVs in dynamic manufacturing environments. …”
-
3535
Research methodology flow diagram.
Published 2025“…Results show that SIDFM reduces navigation errors by 12.09% at low acceleration and 11.43% at high acceleration while also significantly decreasing positioning errors. These improvements enhance the stability, precision, and safety of AGVs in dynamic manufacturing environments. …”
-
3536
Positioning error analysis.
Published 2025“…Results show that SIDFM reduces navigation errors by 12.09% at low acceleration and 11.43% at high acceleration while also significantly decreasing positioning errors. These improvements enhance the stability, precision, and safety of AGVs in dynamic manufacturing environments. …”
-
3537
Error-Bar graph.
Published 2025“…Results show that SIDFM reduces navigation errors by 12.09% at low acceleration and 11.43% at high acceleration while also significantly decreasing positioning errors. These improvements enhance the stability, precision, and safety of AGVs in dynamic manufacturing environments. …”
-
3538
Accuracy on the ERAM task.
Published 2024“…However, coefficients for estrogen were significant for both emotion recognition tasks. Higher within-person levels of estrogen predicted lower accuracy, whereas higher between-person estrogen levels predicted greater accuracy. …”
-
3539
-
3540