Search alternatives:
linear decrease » linear increase (Expand Search)
lower decrease » larger decrease (Expand Search), teer decrease (Expand Search), we decrease (Expand Search)
linear decrease » linear increase (Expand Search)
lower decrease » larger decrease (Expand Search), teer decrease (Expand Search), we decrease (Expand Search)
-
3561
Comparison of precision of various proxy models.
Published 2024“…The <i>T</i><sub>max</sub> of the battery module decreased by 6.84% from 40.94°C to 38.14°C and temperature mean square deviation decreased (<i>TSD</i>) by 62.13% from 1.69 to 0.64. …”
-
3562
Comparison between actual and predicted values.
Published 2024“…The <i>T</i><sub>max</sub> of the battery module decreased by 6.84% from 40.94°C to 38.14°C and temperature mean square deviation decreased (<i>TSD</i>) by 62.13% from 1.69 to 0.64. …”
-
3563
Sample points and numerical simulation results.
Published 2024“…The <i>T</i><sub>max</sub> of the battery module decreased by 6.84% from 40.94°C to 38.14°C and temperature mean square deviation decreased (<i>TSD</i>) by 62.13% from 1.69 to 0.64. …”
-
3564
Three-dimensional heat transfer model parameters.
Published 2024“…The <i>T</i><sub>max</sub> of the battery module decreased by 6.84% from 40.94°C to 38.14°C and temperature mean square deviation decreased (<i>TSD</i>) by 62.13% from 1.69 to 0.64. …”
-
3565
Optimal Latin square sampling distribution.
Published 2024“…The <i>T</i><sub>max</sub> of the battery module decreased by 6.84% from 40.94°C to 38.14°C and temperature mean square deviation decreased (<i>TSD</i>) by 62.13% from 1.69 to 0.64. …”
-
3566
2C discharge rate grid independence test.
Published 2024“…The <i>T</i><sub>max</sub> of the battery module decreased by 6.84% from 40.94°C to 38.14°C and temperature mean square deviation decreased (<i>TSD</i>) by 62.13% from 1.69 to 0.64. …”
-
3567
Feasibility diagram of design points.
Published 2024“…The <i>T</i><sub>max</sub> of the battery module decreased by 6.84% from 40.94°C to 38.14°C and temperature mean square deviation decreased (<i>TSD</i>) by 62.13% from 1.69 to 0.64. …”
-
3568
Related parameters of square LIBs.
Published 2024“…The <i>T</i><sub>max</sub> of the battery module decreased by 6.84% from 40.94°C to 38.14°C and temperature mean square deviation decreased (<i>TSD</i>) by 62.13% from 1.69 to 0.64. …”
-
3569
Multi objective optimization design process.
Published 2024“…The <i>T</i><sub>max</sub> of the battery module decreased by 6.84% from 40.94°C to 38.14°C and temperature mean square deviation decreased (<i>TSD</i>) by 62.13% from 1.69 to 0.64. …”
-
3570
Battery pack model.
Published 2024“…The <i>T</i><sub>max</sub> of the battery module decreased by 6.84% from 40.94°C to 38.14°C and temperature mean square deviation decreased (<i>TSD</i>) by 62.13% from 1.69 to 0.64. …”
-
3571
Value ranges of three representative points.
Published 2025“…<div><p>Capturing congestion propagation among different facilities at intersections in dynamic stochastic traffic environments poses significant challenges, particularly under oversaturated conditions. …”
-
3572
Signalized intersection in Kunshan.
Published 2025“…<div><p>Capturing congestion propagation among different facilities at intersections in dynamic stochastic traffic environments poses significant challenges, particularly under oversaturated conditions. …”
-
3573
Dynamic system state in demand scenarios 2.
Published 2025“…<div><p>Capturing congestion propagation among different facilities at intersections in dynamic stochastic traffic environments poses significant challenges, particularly under oversaturated conditions. …”
-
3574
Survey data of the intersection.
Published 2025“…<div><p>Capturing congestion propagation among different facilities at intersections in dynamic stochastic traffic environments poses significant challenges, particularly under oversaturated conditions. …”
-
3575
The main notations used in this paper.
Published 2025“…<div><p>Capturing congestion propagation among different facilities at intersections in dynamic stochastic traffic environments poses significant challenges, particularly under oversaturated conditions. …”
-
3576
Feedback elimination for feedback queue.
Published 2025“…<div><p>Capturing congestion propagation among different facilities at intersections in dynamic stochastic traffic environments poses significant challenges, particularly under oversaturated conditions. …”
-
3577
A typical cross signalized intersection.
Published 2025“…<div><p>Capturing congestion propagation among different facilities at intersections in dynamic stochastic traffic environments poses significant challenges, particularly under oversaturated conditions. …”
-
3578
Four signal stages for the intersection.
Published 2025“…<div><p>Capturing congestion propagation among different facilities at intersections in dynamic stochastic traffic environments poses significant challenges, particularly under oversaturated conditions. …”
-
3579
Dynamic system state in demand scenarios 3.
Published 2025“…<div><p>Capturing congestion propagation among different facilities at intersections in dynamic stochastic traffic environments poses significant challenges, particularly under oversaturated conditions. …”
-
3580
Dynamic system state in demand scenarios 1.
Published 2025“…<div><p>Capturing congestion propagation among different facilities at intersections in dynamic stochastic traffic environments poses significant challenges, particularly under oversaturated conditions. …”