Search alternatives:
greater decrease » greatest decrease (Expand Search), greater increase (Expand Search), greater disease (Expand Search)
lower decrease » larger decrease (Expand Search), linear decrease (Expand Search), teer decrease (Expand Search)
we decrease » _ decrease (Expand Search), a decrease (Expand Search), nn decrease (Expand Search)
greater decrease » greatest decrease (Expand Search), greater increase (Expand Search), greater disease (Expand Search)
lower decrease » larger decrease (Expand Search), linear decrease (Expand Search), teer decrease (Expand Search)
we decrease » _ decrease (Expand Search), a decrease (Expand Search), nn decrease (Expand Search)
-
4361
-
4362
-
4363
-
4364
-
4365
Effect of purple potato extract (<i>Solanum tuberosum L</i>.) on hepatic Trichrome positive area in HF diet-fed rats.
Published 2025“…Data are presented as mean±SD, where n = 3. For statistical analysis, the One-way ANOVA was performed, and the Tukey test was done as a post hoc test to compare the means of every group present in this study. …”
-
4366
-
4367
Multiomics Identified the Nutritional Improvement in LAB-Fermented Goat Milk
Published 2025“…Using multiomics, we found that FGM has reduced microbial diversity, with increased <i>Streptococcus</i> and <i>Lactobacillus</i> and decreased <i>Klebsiella</i>. …”
-
4368
Oligos used in this study.
Published 2025“…However, the function of RNF213 in host defense against brain infection remains unclear. Here, we show that increased expression of <i>Rnf213</i> is significantly regulated by interferon alpha/beta receptor (IFNAR) signaling during bacterial infection and ligand stimulation. …”
-
4369
Loading mode.
Published 2025“…The results demonstrate that under identical loading conditions, the maximum displacement of the VIPF (20.63 mm) is 23.8% lower than that of the VPF (27.06 mm). The outer ring of inclined piles in the VIPF significantly enhances structural stiffness through spatial synergy, achieving uniform load distribution and effective redistribution of pile-body internal forces. …”
-
4370
Boxplots showing the differences in miR-21-5p and miR-16-5p levels across increasing AKI severity based on Kidney Disease: Improving Global Outcomes (KDIGO) grades.
Published 2025“…<p>Elevated miR-21-5p levels and decreased miR-16-5p levels correspond to greater AKI severity. …”
-
4371
Grid division diagram.
Published 2025“…Between the second and third sand-blocking fences, when the height of sand-blocking fence is 2.5m, the increase of wind speed is 13.87% lower than that of 2m height. The decrease is the largest, and sand particles are easy to deposit here in large quantities. …”
-
4372
Model calculation diagram.
Published 2025“…Between the second and third sand-blocking fences, when the height of sand-blocking fence is 2.5m, the increase of wind speed is 13.87% lower than that of 2m height. The decrease is the largest, and sand particles are easy to deposit here in large quantities. …”
-
4373
Grid independence verification.
Published 2025“…Between the second and third sand-blocking fences, when the height of sand-blocking fence is 2.5m, the increase of wind speed is 13.87% lower than that of 2m height. The decrease is the largest, and sand particles are easy to deposit here in large quantities. …”
-
4374
Model and meshes.
Published 2025“…The results demonstrate that under identical loading conditions, the maximum displacement of the VIPF (20.63 mm) is 23.8% lower than that of the VPF (27.06 mm). The outer ring of inclined piles in the VIPF significantly enhances structural stiffness through spatial synergy, achieving uniform load distribution and effective redistribution of pile-body internal forces. …”
-
4375
Shearing forces in the tension zone.
Published 2025“…The results demonstrate that under identical loading conditions, the maximum displacement of the VIPF (20.63 mm) is 23.8% lower than that of the VPF (27.06 mm). The outer ring of inclined piles in the VIPF significantly enhances structural stiffness through spatial synergy, achieving uniform load distribution and effective redistribution of pile-body internal forces. …”
-
4376
Pile foundation section.
Published 2025“…The results demonstrate that under identical loading conditions, the maximum displacement of the VIPF (20.63 mm) is 23.8% lower than that of the VPF (27.06 mm). The outer ring of inclined piles in the VIPF significantly enhances structural stiffness through spatial synergy, achieving uniform load distribution and effective redistribution of pile-body internal forces. …”
-
4377
Shearing force in the pressure zone.
Published 2025“…The results demonstrate that under identical loading conditions, the maximum displacement of the VIPF (20.63 mm) is 23.8% lower than that of the VPF (27.06 mm). The outer ring of inclined piles in the VIPF significantly enhances structural stiffness through spatial synergy, achieving uniform load distribution and effective redistribution of pile-body internal forces. …”
-
4378
Strain-stress maps of vertical pile foundation.
Published 2025“…The results demonstrate that under identical loading conditions, the maximum displacement of the VIPF (20.63 mm) is 23.8% lower than that of the VPF (27.06 mm). The outer ring of inclined piles in the VIPF significantly enhances structural stiffness through spatial synergy, achieving uniform load distribution and effective redistribution of pile-body internal forces. …”
-
4379
Displacement-inclination variation graph.
Published 2025“…The results demonstrate that under identical loading conditions, the maximum displacement of the VIPF (20.63 mm) is 23.8% lower than that of the VPF (27.06 mm). The outer ring of inclined piles in the VIPF significantly enhances structural stiffness through spatial synergy, achieving uniform load distribution and effective redistribution of pile-body internal forces. …”
-
4380
Soil modeling and mechanical parameters.
Published 2025“…The results demonstrate that under identical loading conditions, the maximum displacement of the VIPF (20.63 mm) is 23.8% lower than that of the VPF (27.06 mm). The outer ring of inclined piles in the VIPF significantly enhances structural stiffness through spatial synergy, achieving uniform load distribution and effective redistribution of pile-body internal forces. …”