Showing 6,261 - 6,280 results of 18,313 for search 'significantly ((((mean decrease) OR (((teer decrease) OR (a decrease))))) OR (greatest decrease))', query time: 0.63s Refine Results
  1. 6261
  2. 6262
  3. 6263
  4. 6264
  5. 6265

    PRMT5 regulates alternative splicing landscape under hypoxia. by Srinivas Abhishek Mutnuru (22513457)

    Published 2025
    “…<p><b>A)</b> Pie chart showing distribution of different types of significant AS events (FDR < 0.05) in shCTRL vs. shPRMT5 MDA-MB-231 cells under hypoxia. …”
  6. 6266
  7. 6267
  8. 6268
  9. 6269
  10. 6270
  11. 6271

    Data of AFR(%) of axial surface for each group. by Long Li (6555)

    Published 2025
    “…In the adhesive retention strength experiment, prostheses and abutments were bonded using permanent resin cement; retention strength was measured using a universal testing machine. Data were analyzed using one-way analysis of variance (ANOVA) or Welch’s ANOVA, followed by Tukey’s honestly significant difference test.…”
  12. 6272
  13. 6273
  14. 6274
  15. 6275

    Comparison with Existing Studies. by Na Zhao (112953)

    Published 2025
    “…The results indicate that: (1) the presence of pores prolongs both the time to failure and the onset of the AE burst stage, with longer durations observed at higher pore dip angles; (2) AE signal amplitude and frequency vary significantly across different loading stages, and the b-value exhibits an “increase–fluctuation–decrease” trend, with the decreasing stage serving as a precursor to rock instability; (3) pore dip angle strongly influences crack propagation types: dip angles of 0°–30° favor axial cracks and through-going wing cracks, 45°–75° angles tend to induce co-planar and wing crack connectivity, while 90° angles cause crack deviation, hindering through-going failure; (4) intact rock fails in a tensile–shear mixed mode, whereas the number of shear cracks in rocks with pores initially increases and then decreases with dip angle, reaching a maximum at 45°, resulting in shear-dominated failure. …”
  16. 6276

    Specimen Preparation and Experimental Setup. by Na Zhao (112953)

    Published 2025
    “…The results indicate that: (1) the presence of pores prolongs both the time to failure and the onset of the AE burst stage, with longer durations observed at higher pore dip angles; (2) AE signal amplitude and frequency vary significantly across different loading stages, and the b-value exhibits an “increase–fluctuation–decrease” trend, with the decreasing stage serving as a precursor to rock instability; (3) pore dip angle strongly influences crack propagation types: dip angles of 0°–30° favor axial cracks and through-going wing cracks, 45°–75° angles tend to induce co-planar and wing crack connectivity, while 90° angles cause crack deviation, hindering through-going failure; (4) intact rock fails in a tensile–shear mixed mode, whereas the number of shear cracks in rocks with pores initially increases and then decreases with dip angle, reaching a maximum at 45°, resulting in shear-dominated failure. …”
  17. 6277

    UCS texts data. by Na Zhao (112953)

    Published 2025
    “…The results indicate that: (1) the presence of pores prolongs both the time to failure and the onset of the AE burst stage, with longer durations observed at higher pore dip angles; (2) AE signal amplitude and frequency vary significantly across different loading stages, and the b-value exhibits an “increase–fluctuation–decrease” trend, with the decreasing stage serving as a precursor to rock instability; (3) pore dip angle strongly influences crack propagation types: dip angles of 0°–30° favor axial cracks and through-going wing cracks, 45°–75° angles tend to induce co-planar and wing crack connectivity, while 90° angles cause crack deviation, hindering through-going failure; (4) intact rock fails in a tensile–shear mixed mode, whereas the number of shear cracks in rocks with pores initially increases and then decreases with dip angle, reaching a maximum at 45°, resulting in shear-dominated failure. …”
  18. 6278
  19. 6279
  20. 6280