يعرض 6,581 - 6,600 نتائج من 18,267 نتيجة بحث عن 'significantly ((((mean decrease) OR (teer decrease))) OR (((a decrease) OR (nn decrease))))', وقت الاستعلام: 0.67s تنقيح النتائج
  1. 6581

    Direct Observation of Liquid–Liquid Phase Separation and Core–Shell Morphology of PM<sub>2.5</sub> Collected from Three Northeast Asian Cities and Implications for N<sub>2</sub>O<s... حسب Mijung Song (13134633)

    منشور في 2025
    "…As the shell becomes more viscous, the diffusivity of N<sub>2</sub>O<sub>5</sub> decreases, thereby lowering the N<sub>2</sub>O<sub>5</sub> uptake coefficient by 1–3 orders of magnitude and significantly restricting N<sub>2</sub>O<sub>5</sub> uptake. …"
  2. 6582

    Direct Observation of Liquid–Liquid Phase Separation and Core–Shell Morphology of PM<sub>2.5</sub> Collected from Three Northeast Asian Cities and Implications for N<sub>2</sub>O<s... حسب Mijung Song (13134633)

    منشور في 2025
    "…As the shell becomes more viscous, the diffusivity of N<sub>2</sub>O<sub>5</sub> decreases, thereby lowering the N<sub>2</sub>O<sub>5</sub> uptake coefficient by 1–3 orders of magnitude and significantly restricting N<sub>2</sub>O<sub>5</sub> uptake. …"
  3. 6583
  4. 6584

    Prediction of transition readiness. حسب Sharon Barak (4803966)

    منشور في 2025
    "…In most transition domains, help needed did not decrease with age and was not affected by function. …"
  5. 6585

    Dataset visualization diagram. حسب Yaojun Zhang (389482)

    منشور في 2025
    "…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …"
  6. 6586

    Dataset sample images. حسب Yaojun Zhang (389482)

    منشور في 2025
    "…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …"
  7. 6587

    Performance comparison of different models. حسب Yaojun Zhang (389482)

    منشور في 2025
    "…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …"
  8. 6588

    C2f and BC2f module structure diagrams. حسب Yaojun Zhang (389482)

    منشور في 2025
    "…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …"
  9. 6589

    YOLOv8n detection results diagram. حسب Yaojun Zhang (389482)

    منشور في 2025
    "…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …"
  10. 6590

    YOLOv8n-BWG model structure diagram. حسب Yaojun Zhang (389482)

    منشور في 2025
    "…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …"
  11. 6591

    BiFormer structure diagram. حسب Yaojun Zhang (389482)

    منشور في 2025
    "…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …"
  12. 6592

    YOLOv8n-BWG detection results diagram. حسب Yaojun Zhang (389482)

    منشور في 2025
    "…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …"
  13. 6593

    GSConv module structure diagram. حسب Yaojun Zhang (389482)

    منشور في 2025
    "…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …"
  14. 6594

    Performance comparison of three loss functions. حسب Yaojun Zhang (389482)

    منشور في 2025
    "…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …"
  15. 6595

    mAP0.5 Curves of various models. حسب Yaojun Zhang (389482)

    منشور في 2025
    "…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …"
  16. 6596

    Network loss function change diagram. حسب Yaojun Zhang (389482)

    منشور في 2025
    "…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …"
  17. 6597

    Comparative diagrams of different indicators. حسب Yaojun Zhang (389482)

    منشور في 2025
    "…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …"
  18. 6598

    YOLOv8n structure diagram. حسب Yaojun Zhang (389482)

    منشور في 2025
    "…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …"
  19. 6599

    Geometric model of the binocular system. حسب Yaojun Zhang (389482)

    منشور في 2025
    "…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …"
  20. 6600

    Enhanced dataset sample images. حسب Yaojun Zhang (389482)

    منشور في 2025
    "…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …"