بدائل البحث:
linear decrease » linear increase (توسيع البحث)
nn decrease » _ decrease (توسيع البحث), gy decreased (توسيع البحث), b1 decreased (توسيع البحث)
a decrease » _ decrease (توسيع البحث), _ decreased (توسيع البحث), _ decreases (توسيع البحث)
linear decrease » linear increase (توسيع البحث)
nn decrease » _ decrease (توسيع البحث), gy decreased (توسيع البحث), b1 decreased (توسيع البحث)
a decrease » _ decrease (توسيع البحث), _ decreased (توسيع البحث), _ decreases (توسيع البحث)
-
5841
BWO-BiLSTM model prediction results.
منشور في 2025"…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …"
-
5842
Bi-LSTM architecture diagram.
منشور في 2025"…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …"
-
5843
LOSS curves for BWO-BiLSTM model training.
منشور في 2025"…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …"
-
5844
Analysis of STL-PCA prediction results.
منشور في 2025"…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …"
-
5845
Accumulated contribution rate of PCA.
منشور في 2025"…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …"
-
5846
Figure of ablation experiment.
منشور في 2025"…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …"
-
5847
Flowchart of the STL-PCA-BWO-BiLSTM model.
منشور في 2025"…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …"
-
5848
Parameter optimization results of BiLSTM.
منشور في 2025"…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …"
-
5849
Descriptive statistical analysis of data.
منشور في 2025"…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …"
-
5850
The MAE value of the model under raw data.
منشور في 2025"…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …"
-
5851
Three error values under raw data.
منشور في 2025"…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …"
-
5852
Decomposition of time scries plot.
منشور في 2025"…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …"
-
5853
Estimated results of the mediation effect.
منشور في 2024"…Besides the result from the double threshold model reveals a complex, nonlinear relationship between trade openness and CO2 emissions in Africa. …"
-
5854
Panel unit root test result.
منشور في 2024"…Besides the result from the double threshold model reveals a complex, nonlinear relationship between trade openness and CO2 emissions in Africa. …"
-
5855
Kernel density estimation for CO2.
منشور في 2024"…Besides the result from the double threshold model reveals a complex, nonlinear relationship between trade openness and CO2 emissions in Africa. …"
-
5856
Change in panel quantile regression coefficients.
منشور في 2024"…Besides the result from the double threshold model reveals a complex, nonlinear relationship between trade openness and CO2 emissions in Africa. …"
-
5857
Definitions of variables and measurements.
منشور في 2024"…Besides the result from the double threshold model reveals a complex, nonlinear relationship between trade openness and CO2 emissions in Africa. …"
-
5858
Regression estimates: Double threshold model.
منشور في 2024"…Besides the result from the double threshold model reveals a complex, nonlinear relationship between trade openness and CO2 emissions in Africa. …"
-
5859
Results from cross sectional dependence test.
منشور في 2024"…Besides the result from the double threshold model reveals a complex, nonlinear relationship between trade openness and CO2 emissions in Africa. …"
-
5860
Panel quantile regression results.
منشور في 2024"…Besides the result from the double threshold model reveals a complex, nonlinear relationship between trade openness and CO2 emissions in Africa. …"