بدائل البحث:
greater decrease » greatest decrease (توسيع البحث), greater increase (توسيع البحث), greater disease (توسيع البحث)
teer decrease » mean decrease (توسيع البحث)
nn decrease » _ decrease (توسيع البحث), mean decrease (توسيع البحث), gy decreased (توسيع البحث)
a decrease » _ decrease (توسيع البحث), _ decreased (توسيع البحث), _ decreases (توسيع البحث)
greater decrease » greatest decrease (توسيع البحث), greater increase (توسيع البحث), greater disease (توسيع البحث)
teer decrease » mean decrease (توسيع البحث)
nn decrease » _ decrease (توسيع البحث), mean decrease (توسيع البحث), gy decreased (توسيع البحث)
a decrease » _ decrease (توسيع البحث), _ decreased (توسيع البحث), _ decreases (توسيع البحث)
-
4841
Analysis of raw data prediction results.
منشور في 2025"…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …"
-
4842
Flowchart of the STL.
منشور في 2025"…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …"
-
4843
SARIMA predicts season components.
منشور في 2025"…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …"
-
4844
BWO-BiLSTM model prediction results.
منشور في 2025"…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …"
-
4845
Bi-LSTM architecture diagram.
منشور في 2025"…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …"
-
4846
STL Linear Combination Forecast Graph.
منشور في 2025"…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …"
-
4847
LOSS curves for BWO-BiLSTM model training.
منشور في 2025"…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …"
-
4848
Analysis of STL-PCA prediction results.
منشور في 2025"…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …"
-
4849
Accumulated contribution rate of PCA.
منشور في 2025"…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …"
-
4850
Figure of ablation experiment.
منشور في 2025"…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …"
-
4851
Flowchart of the STL-PCA-BWO-BiLSTM model.
منشور في 2025"…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …"
-
4852
Parameter optimization results of BiLSTM.
منشور في 2025"…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …"
-
4853
Descriptive statistical analysis of data.
منشور في 2025"…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …"
-
4854
The MAE value of the model under raw data.
منشور في 2025"…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …"
-
4855
Three error values under raw data.
منشور في 2025"…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …"
-
4856
Decomposition of time scries plot.
منشور في 2025"…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …"
-
4857
Risk of bias summary.
منشور في 2025"…The observed decrease in body weight could be partially attributed to factors influencing energy balance, as evidenced by the significantly lower mean calorie intake at the end of the intervention (1694.71 kcal/day, 95% CI: 1498.57–1890.85) compared to the baseline intake (2000.64 kcal/day, 95% CI: 1830–2172.98), despite the absence of intentional efforts to restrict energy intake by the participants. …"
-
4858
Criteria for study selection.
منشور في 2025"…The observed decrease in body weight could be partially attributed to factors influencing energy balance, as evidenced by the significantly lower mean calorie intake at the end of the intervention (1694.71 kcal/day, 95% CI: 1498.57–1890.85) compared to the baseline intake (2000.64 kcal/day, 95% CI: 1830–2172.98), despite the absence of intentional efforts to restrict energy intake by the participants. …"
-
4859
Table1_Neutrophil extracellular traps as immunofibrotic mediators in RA-ILD; pilot evaluation of the nintedanib therapy.docx
منشور في 2024"…Objective<p>Rheumatoid arthritis-associated interstitial lung disease (RA-ILD) is a significant pulmonary complication of RA. This study tried to elucidate the mechanisms enhancing inflammation and causing lung injury in RA-ILD, focusing on the role of neutrophil extracellular traps (NETs). …"
-
4860
Image1_Neutrophil extracellular traps as immunofibrotic mediators in RA-ILD; pilot evaluation of the nintedanib therapy.tif
منشور في 2024"…Objective<p>Rheumatoid arthritis-associated interstitial lung disease (RA-ILD) is a significant pulmonary complication of RA. This study tried to elucidate the mechanisms enhancing inflammation and causing lung injury in RA-ILD, focusing on the role of neutrophil extracellular traps (NETs). …"