Showing 2,381 - 2,400 results of 5,273 for search 'significantly ((((nn decrease) OR (linear decrease))) OR (((greater decrease) OR (mean decrease))))', query time: 0.56s Refine Results
  1. 2381

    Major hyperparameters of RF-MLPR. by Jintao Li (448681)

    Published 2024
    “…For instance, the RF-MLPR model achieved a 3.7%–6.5% improvement in the Nash-Sutcliffe efficiency (NSE) metric across four hydrological stations compared to the RF-SVR model. (4) Prediction accuracy decreased with longer forecast periods, with the R<sup>2</sup> value dropping from 0.8886 for a 1-month forecast to 0.6358 for a 12-month forecast, indicating the increasing challenge of long-term predictions due to greater uncertainty and the accumulation of influencing factors over time. (5) The RF-MLPR model outperformed the RF-SVR model, demonstrating a superior ability to capture the complex, nonlinear relationships inherent in the data. …”
  2. 2382

    Results of RF algorithm screening factors. by Jintao Li (448681)

    Published 2024
    “…For instance, the RF-MLPR model achieved a 3.7%–6.5% improvement in the Nash-Sutcliffe efficiency (NSE) metric across four hydrological stations compared to the RF-SVR model. (4) Prediction accuracy decreased with longer forecast periods, with the R<sup>2</sup> value dropping from 0.8886 for a 1-month forecast to 0.6358 for a 12-month forecast, indicating the increasing challenge of long-term predictions due to greater uncertainty and the accumulation of influencing factors over time. (5) The RF-MLPR model outperformed the RF-SVR model, demonstrating a superior ability to capture the complex, nonlinear relationships inherent in the data. …”
  3. 2383

    Schematic diagram of the basic principles of SVR. by Jintao Li (448681)

    Published 2024
    “…For instance, the RF-MLPR model achieved a 3.7%–6.5% improvement in the Nash-Sutcliffe efficiency (NSE) metric across four hydrological stations compared to the RF-SVR model. (4) Prediction accuracy decreased with longer forecast periods, with the R<sup>2</sup> value dropping from 0.8886 for a 1-month forecast to 0.6358 for a 12-month forecast, indicating the increasing challenge of long-term predictions due to greater uncertainty and the accumulation of influencing factors over time. (5) The RF-MLPR model outperformed the RF-SVR model, demonstrating a superior ability to capture the complex, nonlinear relationships inherent in the data. …”
  4. 2384
  5. 2385
  6. 2386
  7. 2387
  8. 2388
  9. 2389

    Attitude towards NTDs in the study Area. by Uchechukwu M. Chukwuocha (6685790)

    Published 2025
    “…<div><p>Background</p><p>Neglected Tropical Diseases (NTDs) continue to significantly impact marginalized communities, contributing to high morbidity, stigma, and social exclusion. …”
  10. 2390

    Dataset of results. by Uchechukwu M. Chukwuocha (6685790)

    Published 2025
    “…<div><p>Background</p><p>Neglected Tropical Diseases (NTDs) continue to significantly impact marginalized communities, contributing to high morbidity, stigma, and social exclusion. …”
  11. 2391

    Respondents’ perception about the public artwork. by Uchechukwu M. Chukwuocha (6685790)

    Published 2025
    “…<div><p>Background</p><p>Neglected Tropical Diseases (NTDs) continue to significantly impact marginalized communities, contributing to high morbidity, stigma, and social exclusion. …”
  12. 2392
  13. 2393
  14. 2394
  15. 2395
  16. 2396
  17. 2397
  18. 2398
  19. 2399
  20. 2400