Search alternatives:
linear decrease » linear increase (Expand Search)
teer decrease » greater decrease (Expand Search)
Showing 2,201 - 2,220 results of 4,206 for search 'significantly ((((teer decrease) OR (mean decrease))) OR (linear decrease))', query time: 0.40s Refine Results
  1. 2201

    Kappa coefficients for different algorithms. by Yingying Liu (360782)

    Published 2025
    “…The actual accuracy and mean latency time of the model were 92.43% and 260ms, respectively. …”
  2. 2202

    The structure of ASPP+ block. by Yingying Liu (360782)

    Published 2025
    “…The actual accuracy and mean latency time of the model were 92.43% and 260ms, respectively. …”
  3. 2203

    The structure of attention gate block [31]. by Yingying Liu (360782)

    Published 2025
    “…The actual accuracy and mean latency time of the model were 92.43% and 260ms, respectively. …”
  4. 2204

    DSC block and its application network structure. by Yingying Liu (360782)

    Published 2025
    “…The actual accuracy and mean latency time of the model were 92.43% and 260ms, respectively. …”
  5. 2205

    The structure of multi-scale residual block [30]. by Yingying Liu (360782)

    Published 2025
    “…The actual accuracy and mean latency time of the model were 92.43% and 260ms, respectively. …”
  6. 2206

    The structure of IRAU and Res2Net+ block [22]. by Yingying Liu (360782)

    Published 2025
    “…The actual accuracy and mean latency time of the model were 92.43% and 260ms, respectively. …”
  7. 2207
  8. 2208
  9. 2209

    Prediction of transition readiness. by Sharon Barak (4803966)

    Published 2025
    “…In most transition domains, help needed did not decrease with age and was not affected by function. …”
  10. 2210
  11. 2211

    Dataset visualization diagram. by Yaojun Zhang (389482)

    Published 2025
    “…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
  12. 2212

    Dataset sample images. by Yaojun Zhang (389482)

    Published 2025
    “…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
  13. 2213

    Performance comparison of different models. by Yaojun Zhang (389482)

    Published 2025
    “…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
  14. 2214

    C2f and BC2f module structure diagrams. by Yaojun Zhang (389482)

    Published 2025
    “…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
  15. 2215

    YOLOv8n detection results diagram. by Yaojun Zhang (389482)

    Published 2025
    “…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
  16. 2216

    YOLOv8n-BWG model structure diagram. by Yaojun Zhang (389482)

    Published 2025
    “…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
  17. 2217

    BiFormer structure diagram. by Yaojun Zhang (389482)

    Published 2025
    “…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
  18. 2218

    YOLOv8n-BWG detection results diagram. by Yaojun Zhang (389482)

    Published 2025
    “…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
  19. 2219

    GSConv module structure diagram. by Yaojun Zhang (389482)

    Published 2025
    “…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
  20. 2220

    Performance comparison of three loss functions. by Yaojun Zhang (389482)

    Published 2025
    “…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”