Search alternatives:
teer decrease » mean decrease (Expand Search), greater decrease (Expand Search)
we decrease » _ decrease (Expand Search), a decrease (Expand Search), mean decrease (Expand Search)
nn decrease » _ decrease (Expand Search), a decrease (Expand Search), mean decrease (Expand Search)
teer decrease » mean decrease (Expand Search), greater decrease (Expand Search)
we decrease » _ decrease (Expand Search), a decrease (Expand Search), mean decrease (Expand Search)
nn decrease » _ decrease (Expand Search), a decrease (Expand Search), mean decrease (Expand Search)
-
1061
Classification model parameter settings.
Published 2025“…Experiments demonstrate that PCA-CGAN not only achieves stable convergence on a large-scale heterogeneous dataset comprising 43 patients for the first time but also resolves the “dilution effect” problem in data augmentation, avoiding the asymmetric phenomenon where Precision increases while Recall decreases. After data augmentation, the ResNet model’s average F1 score improved significantly, with particularly outstanding performance on rare categories such as atrial premature beats, far surpassing traditional methods like SigCWGAN and TD-GAN. …”
-
1062
MIT-BIH expanded dataset proportion chart.
Published 2025“…Experiments demonstrate that PCA-CGAN not only achieves stable convergence on a large-scale heterogeneous dataset comprising 43 patients for the first time but also resolves the “dilution effect” problem in data augmentation, avoiding the asymmetric phenomenon where Precision increases while Recall decreases. After data augmentation, the ResNet model’s average F1 score improved significantly, with particularly outstanding performance on rare categories such as atrial premature beats, far surpassing traditional methods like SigCWGAN and TD-GAN. …”
-
1063
AUROC Graphs of RF Model and ResNet.
Published 2025“…Experiments demonstrate that PCA-CGAN not only achieves stable convergence on a large-scale heterogeneous dataset comprising 43 patients for the first time but also resolves the “dilution effect” problem in data augmentation, avoiding the asymmetric phenomenon where Precision increases while Recall decreases. After data augmentation, the ResNet model’s average F1 score improved significantly, with particularly outstanding performance on rare categories such as atrial premature beats, far surpassing traditional methods like SigCWGAN and TD-GAN. …”
-
1064
PCA-CGAN Model Workflow Diagram.
Published 2025“…Experiments demonstrate that PCA-CGAN not only achieves stable convergence on a large-scale heterogeneous dataset comprising 43 patients for the first time but also resolves the “dilution effect” problem in data augmentation, avoiding the asymmetric phenomenon where Precision increases while Recall decreases. After data augmentation, the ResNet model’s average F1 score improved significantly, with particularly outstanding performance on rare categories such as atrial premature beats, far surpassing traditional methods like SigCWGAN and TD-GAN. …”
-
1065
Structural Diagrams of RF Model and ResNet Model.
Published 2025“…Experiments demonstrate that PCA-CGAN not only achieves stable convergence on a large-scale heterogeneous dataset comprising 43 patients for the first time but also resolves the “dilution effect” problem in data augmentation, avoiding the asymmetric phenomenon where Precision increases while Recall decreases. After data augmentation, the ResNet model’s average F1 score improved significantly, with particularly outstanding performance on rare categories such as atrial premature beats, far surpassing traditional methods like SigCWGAN and TD-GAN. …”
-
1066
PCA-CGAN model convergence curve.
Published 2025“…Experiments demonstrate that PCA-CGAN not only achieves stable convergence on a large-scale heterogeneous dataset comprising 43 patients for the first time but also resolves the “dilution effect” problem in data augmentation, avoiding the asymmetric phenomenon where Precision increases while Recall decreases. After data augmentation, the ResNet model’s average F1 score improved significantly, with particularly outstanding performance on rare categories such as atrial premature beats, far surpassing traditional methods like SigCWGAN and TD-GAN. …”
-
1067
PCA-CGAN Structure Diagram.
Published 2025“…Experiments demonstrate that PCA-CGAN not only achieves stable convergence on a large-scale heterogeneous dataset comprising 43 patients for the first time but also resolves the “dilution effect” problem in data augmentation, avoiding the asymmetric phenomenon where Precision increases while Recall decreases. After data augmentation, the ResNet model’s average F1 score improved significantly, with particularly outstanding performance on rare categories such as atrial premature beats, far surpassing traditional methods like SigCWGAN and TD-GAN. …”
-
1068
Comparison of Model Five-classification Results.
Published 2025“…Experiments demonstrate that PCA-CGAN not only achieves stable convergence on a large-scale heterogeneous dataset comprising 43 patients for the first time but also resolves the “dilution effect” problem in data augmentation, avoiding the asymmetric phenomenon where Precision increases while Recall decreases. After data augmentation, the ResNet model’s average F1 score improved significantly, with particularly outstanding performance on rare categories such as atrial premature beats, far surpassing traditional methods like SigCWGAN and TD-GAN. …”
-
1069
PCAECG-GAN K-fold experiment table.
Published 2025“…Experiments demonstrate that PCA-CGAN not only achieves stable convergence on a large-scale heterogeneous dataset comprising 43 patients for the first time but also resolves the “dilution effect” problem in data augmentation, avoiding the asymmetric phenomenon where Precision increases while Recall decreases. After data augmentation, the ResNet model’s average F1 score improved significantly, with particularly outstanding performance on rare categories such as atrial premature beats, far surpassing traditional methods like SigCWGAN and TD-GAN. …”
-
1070
PCA-CGAN Pseudocode Table.
Published 2025“…Experiments demonstrate that PCA-CGAN not only achieves stable convergence on a large-scale heterogeneous dataset comprising 43 patients for the first time but also resolves the “dilution effect” problem in data augmentation, avoiding the asymmetric phenomenon where Precision increases while Recall decreases. After data augmentation, the ResNet model’s average F1 score improved significantly, with particularly outstanding performance on rare categories such as atrial premature beats, far surpassing traditional methods like SigCWGAN and TD-GAN. …”
-
1071
PCA-CGAN Ablation Experiment Results.
Published 2025“…Experiments demonstrate that PCA-CGAN not only achieves stable convergence on a large-scale heterogeneous dataset comprising 43 patients for the first time but also resolves the “dilution effect” problem in data augmentation, avoiding the asymmetric phenomenon where Precision increases while Recall decreases. After data augmentation, the ResNet model’s average F1 score improved significantly, with particularly outstanding performance on rare categories such as atrial premature beats, far surpassing traditional methods like SigCWGAN and TD-GAN. …”
-
1072
Acoustic Startle at 28 dpf.
Published 2025“…(C) There is a significant decrease of PPI in the 48+ and 72 + fish (p < 0.0001). …”
-
1073
Schematic diagram of monitoring points and units.
Published 2025“…Results demonstrate that unreinforced foundations exhibit systematic residual deformation due to liquefaction-induced sand flow, which is significantly reduced by gravel pile reinforcement. Both excess pore water pressure and pore pressure ratio decrease markedly after reinforcement. …”
-
1074
The analysis procedure.
Published 2025“…Results demonstrate that unreinforced foundations exhibit systematic residual deformation due to liquefaction-induced sand flow, which is significantly reduced by gravel pile reinforcement. Both excess pore water pressure and pore pressure ratio decrease markedly after reinforcement. …”
-
1075
Model monitoring points and units coordinates.
Published 2025“…Results demonstrate that unreinforced foundations exhibit systematic residual deformation due to liquefaction-induced sand flow, which is significantly reduced by gravel pile reinforcement. Both excess pore water pressure and pore pressure ratio decrease markedly after reinforcement. …”
-
1076
Soil mechanical parameters.
Published 2025“…Results demonstrate that unreinforced foundations exhibit systematic residual deformation due to liquefaction-induced sand flow, which is significantly reduced by gravel pile reinforcement. Both excess pore water pressure and pore pressure ratio decrease markedly after reinforcement. …”
-
1077
Parameters of the contact surface.
Published 2025“…Results demonstrate that unreinforced foundations exhibit systematic residual deformation due to liquefaction-induced sand flow, which is significantly reduced by gravel pile reinforcement. Both excess pore water pressure and pore pressure ratio decrease markedly after reinforcement. …”
-
1078
The schematic diagram of free-field boundary.
Published 2025“…Results demonstrate that unreinforced foundations exhibit systematic residual deformation due to liquefaction-induced sand flow, which is significantly reduced by gravel pile reinforcement. Both excess pore water pressure and pore pressure ratio decrease markedly after reinforcement. …”
-
1079
Residual deformation parameters of soil.
Published 2025“…Results demonstrate that unreinforced foundations exhibit systematic residual deformation due to liquefaction-induced sand flow, which is significantly reduced by gravel pile reinforcement. Both excess pore water pressure and pore pressure ratio decrease markedly after reinforcement. …”
-
1080
Soil fluid and liquefaction parameters.
Published 2025“…Results demonstrate that unreinforced foundations exhibit systematic residual deformation due to liquefaction-induced sand flow, which is significantly reduced by gravel pile reinforcement. Both excess pore water pressure and pore pressure ratio decrease markedly after reinforcement. …”