بدائل البحث:
linear decrease » linear increase (توسيع البحث)
we decrease » _ decrease (توسيع البحث), mean decrease (توسيع البحث), teer decrease (توسيع البحث)
nn decrease » _ decrease (توسيع البحث), mean decrease (توسيع البحث), gy decreased (توسيع البحث)
a decrease » _ decrease (توسيع البحث), _ decreased (توسيع البحث), _ decreases (توسيع البحث)
linear decrease » linear increase (توسيع البحث)
we decrease » _ decrease (توسيع البحث), mean decrease (توسيع البحث), teer decrease (توسيع البحث)
nn decrease » _ decrease (توسيع البحث), mean decrease (توسيع البحث), gy decreased (توسيع البحث)
a decrease » _ decrease (توسيع البحث), _ decreased (توسيع البحث), _ decreases (توسيع البحث)
-
5141
Prediction effect of each model after STL.
منشور في 2025"…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …"
-
5142
The kernel density plot for data of each feature.
منشور في 2025"…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …"
-
5143
Analysis of raw data prediction results.
منشور في 2025"…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …"
-
5144
Flowchart of the STL.
منشور في 2025"…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …"
-
5145
SARIMA predicts season components.
منشور في 2025"…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …"
-
5146
BWO-BiLSTM model prediction results.
منشور في 2025"…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …"
-
5147
Bi-LSTM architecture diagram.
منشور في 2025"…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …"
-
5148
LOSS curves for BWO-BiLSTM model training.
منشور في 2025"…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …"
-
5149
Analysis of STL-PCA prediction results.
منشور في 2025"…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …"
-
5150
Accumulated contribution rate of PCA.
منشور في 2025"…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …"
-
5151
Figure of ablation experiment.
منشور في 2025"…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …"
-
5152
Flowchart of the STL-PCA-BWO-BiLSTM model.
منشور في 2025"…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …"
-
5153
Parameter optimization results of BiLSTM.
منشور في 2025"…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …"
-
5154
Descriptive statistical analysis of data.
منشور في 2025"…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …"
-
5155
The MAE value of the model under raw data.
منشور في 2025"…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …"
-
5156
Three error values under raw data.
منشور في 2025"…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …"
-
5157
Decomposition of time scries plot.
منشور في 2025"…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …"
-
5158
Risk of bias summary.
منشور في 2025"…The observed decrease in body weight could be partially attributed to factors influencing energy balance, as evidenced by the significantly lower mean calorie intake at the end of the intervention (1694.71 kcal/day, 95% CI: 1498.57–1890.85) compared to the baseline intake (2000.64 kcal/day, 95% CI: 1830–2172.98), despite the absence of intentional efforts to restrict energy intake by the participants. …"
-
5159
Criteria for study selection.
منشور في 2025"…The observed decrease in body weight could be partially attributed to factors influencing energy balance, as evidenced by the significantly lower mean calorie intake at the end of the intervention (1694.71 kcal/day, 95% CI: 1498.57–1890.85) compared to the baseline intake (2000.64 kcal/day, 95% CI: 1830–2172.98), despite the absence of intentional efforts to restrict energy intake by the participants. …"
-
5160
Estimated results of the mediation effect.
منشور في 2024"…Besides the result from the double threshold model reveals a complex, nonlinear relationship between trade openness and CO2 emissions in Africa. …"