بدائل البحث:
greater decrease » greatest decrease (توسيع البحث), greater increase (توسيع البحث), greater disease (توسيع البحث)
linear decrease » linear increase (توسيع البحث)
we decrease » _ decrease (توسيع البحث), a decrease (توسيع البحث), nn decrease (توسيع البحث)
greater decrease » greatest decrease (توسيع البحث), greater increase (توسيع البحث), greater disease (توسيع البحث)
linear decrease » linear increase (توسيع البحث)
we decrease » _ decrease (توسيع البحث), a decrease (توسيع البحث), nn decrease (توسيع البحث)
-
1901
Amplitude for A/L = 0.02.
منشور في 2025"…Increased surface roughness significantly reduced power output, flapping frequency, and amplitude. …"
-
1902
Graph for maximum Frequency at G<sub>y</sub> = 0.
منشور في 2025"…Increased surface roughness significantly reduced power output, flapping frequency, and amplitude. …"
-
1903
Graph for maximum Power at G<sub>y</sub> = 0.
منشور في 2025"…Increased surface roughness significantly reduced power output, flapping frequency, and amplitude. …"
-
1904
Amplitude for A/L = 0.03.
منشور في 2025"…Increased surface roughness significantly reduced power output, flapping frequency, and amplitude. …"
-
1905
Summary of experimentation results.
منشور في 2025"…Increased surface roughness significantly reduced power output, flapping frequency, and amplitude. …"
-
1906
Piezoelectric eel.
منشور في 2025"…Increased surface roughness significantly reduced power output, flapping frequency, and amplitude. …"
-
1907
-
1908
-
1909
-
1910
-
1911
<b>Data for s</b><b>easonal variations in coral lipids and their significance for energy maintenance in the </b><b>South China Sea</b>
منشور في 2024"…<p dir="ltr">In recent years, the intensification of global warming and extreme climate have led to an increase in the frequency and severity of coral bleaching. Coral bleaching means a decrease in symbiotic zooxanthellae density (ZD). …"
-
1912
-
1913
-
1914
Major hyperparameters of RF-SVR.
منشور في 2024"…For instance, the RF-MLPR model achieved a 3.7%–6.5% improvement in the Nash-Sutcliffe efficiency (NSE) metric across four hydrological stations compared to the RF-SVR model. (4) Prediction accuracy decreased with longer forecast periods, with the R<sup>2</sup> value dropping from 0.8886 for a 1-month forecast to 0.6358 for a 12-month forecast, indicating the increasing challenge of long-term predictions due to greater uncertainty and the accumulation of influencing factors over time. (5) The RF-MLPR model outperformed the RF-SVR model, demonstrating a superior ability to capture the complex, nonlinear relationships inherent in the data. …"
-
1915
Pseudo code for coupling model execution process.
منشور في 2024"…For instance, the RF-MLPR model achieved a 3.7%–6.5% improvement in the Nash-Sutcliffe efficiency (NSE) metric across four hydrological stations compared to the RF-SVR model. (4) Prediction accuracy decreased with longer forecast periods, with the R<sup>2</sup> value dropping from 0.8886 for a 1-month forecast to 0.6358 for a 12-month forecast, indicating the increasing challenge of long-term predictions due to greater uncertainty and the accumulation of influencing factors over time. (5) The RF-MLPR model outperformed the RF-SVR model, demonstrating a superior ability to capture the complex, nonlinear relationships inherent in the data. …"
-
1916
Major hyperparameters of RF-MLPR.
منشور في 2024"…For instance, the RF-MLPR model achieved a 3.7%–6.5% improvement in the Nash-Sutcliffe efficiency (NSE) metric across four hydrological stations compared to the RF-SVR model. (4) Prediction accuracy decreased with longer forecast periods, with the R<sup>2</sup> value dropping from 0.8886 for a 1-month forecast to 0.6358 for a 12-month forecast, indicating the increasing challenge of long-term predictions due to greater uncertainty and the accumulation of influencing factors over time. (5) The RF-MLPR model outperformed the RF-SVR model, demonstrating a superior ability to capture the complex, nonlinear relationships inherent in the data. …"
-
1917
Results of RF algorithm screening factors.
منشور في 2024"…For instance, the RF-MLPR model achieved a 3.7%–6.5% improvement in the Nash-Sutcliffe efficiency (NSE) metric across four hydrological stations compared to the RF-SVR model. (4) Prediction accuracy decreased with longer forecast periods, with the R<sup>2</sup> value dropping from 0.8886 for a 1-month forecast to 0.6358 for a 12-month forecast, indicating the increasing challenge of long-term predictions due to greater uncertainty and the accumulation of influencing factors over time. (5) The RF-MLPR model outperformed the RF-SVR model, demonstrating a superior ability to capture the complex, nonlinear relationships inherent in the data. …"
-
1918
Schematic diagram of the basic principles of SVR.
منشور في 2024"…For instance, the RF-MLPR model achieved a 3.7%–6.5% improvement in the Nash-Sutcliffe efficiency (NSE) metric across four hydrological stations compared to the RF-SVR model. (4) Prediction accuracy decreased with longer forecast periods, with the R<sup>2</sup> value dropping from 0.8886 for a 1-month forecast to 0.6358 for a 12-month forecast, indicating the increasing challenge of long-term predictions due to greater uncertainty and the accumulation of influencing factors over time. (5) The RF-MLPR model outperformed the RF-SVR model, demonstrating a superior ability to capture the complex, nonlinear relationships inherent in the data. …"
-
1919
-
1920