Search alternatives:
largest decrease » larger decrease (Expand Search), marked decrease (Expand Search)
we decrease » _ decrease (Expand Search), nn decrease (Expand Search), teer decrease (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
largest decrease » larger decrease (Expand Search), marked decrease (Expand Search)
we decrease » _ decrease (Expand Search), nn decrease (Expand Search), teer decrease (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
-
4001
-
4002
-
4003
CaCl<sub>2</sub> and MnCl<sub>2</sub> treatment significantly reduced Pol I occupancy on the rDNA template.
Published 2025“…If the <i>p</i>-value < 0.05, that was deemed a significant difference between the two treatment groups and was indicated with either a green (increased occupancy) or black (decreased occupancy) line below the histogram for the CaCl<sub>2</sub> treated samples with respect to the untreated samples. …”
-
4004
Data Sheet 1_Epigallocatechin-3-gallate protects against osteoarthritis-induced chondrocytes dysfunction by regulating PLa2g2a.pdf
Published 2025“…OA model demonstrated that EGCG treatment significantly promoted cartilage repair and increased Pla2g2a expression. …”
-
4005
-
4006
-
4007
-
4008
-
4009
-
4010
-
4011
-
4012
-
4013
Why Only the 2,6-Bis(o-Carborano)Pyridine-Stabilized Phosphenium Cation Has Succeeded in Splitting H<sub>2</sub>?: Key Design Insights for Next-Gen Phosphenium Pincer Catalysts
Published 2025“…Additionally, the interaction between the phosphorus atom and the nitrogen atom of the pyridine ring in the pincer ligand plays a critical role in stabilizing the cationic product of the reaction. …”
-
4014
Why Only the 2,6-Bis(o-Carborano)Pyridine-Stabilized Phosphenium Cation Has Succeeded in Splitting H<sub>2</sub>?: Key Design Insights for Next-Gen Phosphenium Pincer Catalysts
Published 2025“…Additionally, the interaction between the phosphorus atom and the nitrogen atom of the pyridine ring in the pincer ligand plays a critical role in stabilizing the cationic product of the reaction. …”
-
4015
Why Only the 2,6-Bis(o-Carborano)Pyridine-Stabilized Phosphenium Cation Has Succeeded in Splitting H<sub>2</sub>?: Key Design Insights for Next-Gen Phosphenium Pincer Catalysts
Published 2025“…Additionally, the interaction between the phosphorus atom and the nitrogen atom of the pyridine ring in the pincer ligand plays a critical role in stabilizing the cationic product of the reaction. …”
-
4016
Why Only the 2,6-Bis(o-Carborano)Pyridine-Stabilized Phosphenium Cation Has Succeeded in Splitting H<sub>2</sub>?: Key Design Insights for Next-Gen Phosphenium Pincer Catalysts
Published 2025“…Additionally, the interaction between the phosphorus atom and the nitrogen atom of the pyridine ring in the pincer ligand plays a critical role in stabilizing the cationic product of the reaction. …”
-
4017
Why Only the 2,6-Bis(o-Carborano)Pyridine-Stabilized Phosphenium Cation Has Succeeded in Splitting H<sub>2</sub>?: Key Design Insights for Next-Gen Phosphenium Pincer Catalysts
Published 2025“…Additionally, the interaction between the phosphorus atom and the nitrogen atom of the pyridine ring in the pincer ligand plays a critical role in stabilizing the cationic product of the reaction. …”
-
4018
Why Only the 2,6-Bis(o-Carborano)Pyridine-Stabilized Phosphenium Cation Has Succeeded in Splitting H<sub>2</sub>?: Key Design Insights for Next-Gen Phosphenium Pincer Catalysts
Published 2025“…Additionally, the interaction between the phosphorus atom and the nitrogen atom of the pyridine ring in the pincer ligand plays a critical role in stabilizing the cationic product of the reaction. …”
-
4019
Why Only the 2,6-Bis(o-Carborano)Pyridine-Stabilized Phosphenium Cation Has Succeeded in Splitting H<sub>2</sub>?: Key Design Insights for Next-Gen Phosphenium Pincer Catalysts
Published 2025“…Additionally, the interaction between the phosphorus atom and the nitrogen atom of the pyridine ring in the pincer ligand plays a critical role in stabilizing the cationic product of the reaction. …”
-
4020
Why Only the 2,6-Bis(o-Carborano)Pyridine-Stabilized Phosphenium Cation Has Succeeded in Splitting H<sub>2</sub>?: Key Design Insights for Next-Gen Phosphenium Pincer Catalysts
Published 2025“…Additionally, the interaction between the phosphorus atom and the nitrogen atom of the pyridine ring in the pincer ligand plays a critical role in stabilizing the cationic product of the reaction. …”