Showing 1,861 - 1,880 results of 7,331 for search 'significantly ((((we decrease) OR (linear decrease))) OR (larger decrease))', query time: 0.33s Refine Results
  1. 1861

    MIT-BIH expanded dataset proportion chart. by Chao Tang (10925)

    Published 2025
    “…Experiments demonstrate that PCA-CGAN not only achieves stable convergence on a large-scale heterogeneous dataset comprising 43 patients for the first time but also resolves the “dilution effect” problem in data augmentation, avoiding the asymmetric phenomenon where Precision increases while Recall decreases. After data augmentation, the ResNet model’s average F1 score improved significantly, with particularly outstanding performance on rare categories such as atrial premature beats, far surpassing traditional methods like SigCWGAN and TD-GAN. …”
  2. 1862

    AUROC Graphs of RF Model and ResNet. by Chao Tang (10925)

    Published 2025
    “…Experiments demonstrate that PCA-CGAN not only achieves stable convergence on a large-scale heterogeneous dataset comprising 43 patients for the first time but also resolves the “dilution effect” problem in data augmentation, avoiding the asymmetric phenomenon where Precision increases while Recall decreases. After data augmentation, the ResNet model’s average F1 score improved significantly, with particularly outstanding performance on rare categories such as atrial premature beats, far surpassing traditional methods like SigCWGAN and TD-GAN. …”
  3. 1863

    PCA-CGAN Model Workflow Diagram. by Chao Tang (10925)

    Published 2025
    “…Experiments demonstrate that PCA-CGAN not only achieves stable convergence on a large-scale heterogeneous dataset comprising 43 patients for the first time but also resolves the “dilution effect” problem in data augmentation, avoiding the asymmetric phenomenon where Precision increases while Recall decreases. After data augmentation, the ResNet model’s average F1 score improved significantly, with particularly outstanding performance on rare categories such as atrial premature beats, far surpassing traditional methods like SigCWGAN and TD-GAN. …”
  4. 1864

    Structural Diagrams of RF Model and ResNet Model. by Chao Tang (10925)

    Published 2025
    “…Experiments demonstrate that PCA-CGAN not only achieves stable convergence on a large-scale heterogeneous dataset comprising 43 patients for the first time but also resolves the “dilution effect” problem in data augmentation, avoiding the asymmetric phenomenon where Precision increases while Recall decreases. After data augmentation, the ResNet model’s average F1 score improved significantly, with particularly outstanding performance on rare categories such as atrial premature beats, far surpassing traditional methods like SigCWGAN and TD-GAN. …”
  5. 1865

    PCA-CGAN model convergence curve. by Chao Tang (10925)

    Published 2025
    “…Experiments demonstrate that PCA-CGAN not only achieves stable convergence on a large-scale heterogeneous dataset comprising 43 patients for the first time but also resolves the “dilution effect” problem in data augmentation, avoiding the asymmetric phenomenon where Precision increases while Recall decreases. After data augmentation, the ResNet model’s average F1 score improved significantly, with particularly outstanding performance on rare categories such as atrial premature beats, far surpassing traditional methods like SigCWGAN and TD-GAN. …”
  6. 1866

    PCA-CGAN Structure Diagram. by Chao Tang (10925)

    Published 2025
    “…Experiments demonstrate that PCA-CGAN not only achieves stable convergence on a large-scale heterogeneous dataset comprising 43 patients for the first time but also resolves the “dilution effect” problem in data augmentation, avoiding the asymmetric phenomenon where Precision increases while Recall decreases. After data augmentation, the ResNet model’s average F1 score improved significantly, with particularly outstanding performance on rare categories such as atrial premature beats, far surpassing traditional methods like SigCWGAN and TD-GAN. …”
  7. 1867

    Comparison of Model Five-classification Results. by Chao Tang (10925)

    Published 2025
    “…Experiments demonstrate that PCA-CGAN not only achieves stable convergence on a large-scale heterogeneous dataset comprising 43 patients for the first time but also resolves the “dilution effect” problem in data augmentation, avoiding the asymmetric phenomenon where Precision increases while Recall decreases. After data augmentation, the ResNet model’s average F1 score improved significantly, with particularly outstanding performance on rare categories such as atrial premature beats, far surpassing traditional methods like SigCWGAN and TD-GAN. …”
  8. 1868

    PCAECG-GAN K-fold experiment table. by Chao Tang (10925)

    Published 2025
    “…Experiments demonstrate that PCA-CGAN not only achieves stable convergence on a large-scale heterogeneous dataset comprising 43 patients for the first time but also resolves the “dilution effect” problem in data augmentation, avoiding the asymmetric phenomenon where Precision increases while Recall decreases. After data augmentation, the ResNet model’s average F1 score improved significantly, with particularly outstanding performance on rare categories such as atrial premature beats, far surpassing traditional methods like SigCWGAN and TD-GAN. …”
  9. 1869

    PCA-CGAN Pseudocode Table. by Chao Tang (10925)

    Published 2025
    “…Experiments demonstrate that PCA-CGAN not only achieves stable convergence on a large-scale heterogeneous dataset comprising 43 patients for the first time but also resolves the “dilution effect” problem in data augmentation, avoiding the asymmetric phenomenon where Precision increases while Recall decreases. After data augmentation, the ResNet model’s average F1 score improved significantly, with particularly outstanding performance on rare categories such as atrial premature beats, far surpassing traditional methods like SigCWGAN and TD-GAN. …”
  10. 1870

    PCA-CGAN Ablation Experiment Results. by Chao Tang (10925)

    Published 2025
    “…Experiments demonstrate that PCA-CGAN not only achieves stable convergence on a large-scale heterogeneous dataset comprising 43 patients for the first time but also resolves the “dilution effect” problem in data augmentation, avoiding the asymmetric phenomenon where Precision increases while Recall decreases. After data augmentation, the ResNet model’s average F1 score improved significantly, with particularly outstanding performance on rare categories such as atrial premature beats, far surpassing traditional methods like SigCWGAN and TD-GAN. …”
  11. 1871

    Acoustic Startle at 28 dpf. by Morgan Barnes (7876373)

    Published 2025
    “…(C) There is a significant decrease of PPI in the 48+ and 72 + fish (p < 0.0001). …”
  12. 1872

    Workflow for selecting IV and MR analysis. by Zihao Wang (845023)

    Published 2024
    “…</p><p>Methods</p><p>This study applied a bidirectional two-sample MR analysis to explore the causal link between vitamin D and PD. We selected statistically significant single nucleotide polymorphisms (SNPs) related to 25-hydroxyvitamin D (25(OH)D) as instrumental variables (IVs), ensuring no association with known confounders. …”
  13. 1873

    Schematic diagram of monitoring points and units. by Jie Zhao (49409)

    Published 2025
    “…Results demonstrate that unreinforced foundations exhibit systematic residual deformation due to liquefaction-induced sand flow, which is significantly reduced by gravel pile reinforcement. Both excess pore water pressure and pore pressure ratio decrease markedly after reinforcement. …”
  14. 1874

    The analysis procedure. by Jie Zhao (49409)

    Published 2025
    “…Results demonstrate that unreinforced foundations exhibit systematic residual deformation due to liquefaction-induced sand flow, which is significantly reduced by gravel pile reinforcement. Both excess pore water pressure and pore pressure ratio decrease markedly after reinforcement. …”
  15. 1875

    Model monitoring points and units coordinates. by Jie Zhao (49409)

    Published 2025
    “…Results demonstrate that unreinforced foundations exhibit systematic residual deformation due to liquefaction-induced sand flow, which is significantly reduced by gravel pile reinforcement. Both excess pore water pressure and pore pressure ratio decrease markedly after reinforcement. …”
  16. 1876

    Soil mechanical parameters. by Jie Zhao (49409)

    Published 2025
    “…Results demonstrate that unreinforced foundations exhibit systematic residual deformation due to liquefaction-induced sand flow, which is significantly reduced by gravel pile reinforcement. Both excess pore water pressure and pore pressure ratio decrease markedly after reinforcement. …”
  17. 1877

    Parameters of the contact surface. by Jie Zhao (49409)

    Published 2025
    “…Results demonstrate that unreinforced foundations exhibit systematic residual deformation due to liquefaction-induced sand flow, which is significantly reduced by gravel pile reinforcement. Both excess pore water pressure and pore pressure ratio decrease markedly after reinforcement. …”
  18. 1878

    The schematic diagram of free-field boundary. by Jie Zhao (49409)

    Published 2025
    “…Results demonstrate that unreinforced foundations exhibit systematic residual deformation due to liquefaction-induced sand flow, which is significantly reduced by gravel pile reinforcement. Both excess pore water pressure and pore pressure ratio decrease markedly after reinforcement. …”
  19. 1879

    Residual deformation parameters of soil. by Jie Zhao (49409)

    Published 2025
    “…Results demonstrate that unreinforced foundations exhibit systematic residual deformation due to liquefaction-induced sand flow, which is significantly reduced by gravel pile reinforcement. Both excess pore water pressure and pore pressure ratio decrease markedly after reinforcement. …”
  20. 1880

    Soil fluid and liquefaction parameters. by Jie Zhao (49409)

    Published 2025
    “…Results demonstrate that unreinforced foundations exhibit systematic residual deformation due to liquefaction-induced sand flow, which is significantly reduced by gravel pile reinforcement. Both excess pore water pressure and pore pressure ratio decrease markedly after reinforcement. …”