بدائل البحث:
greater decrease » greatest decrease (توسيع البحث), greater increase (توسيع البحث), greater disease (توسيع البحث)
nn decrease » _ decrease (توسيع البحث), gy decreased (توسيع البحث), b1 decreased (توسيع البحث)
a decrease » _ decrease (توسيع البحث), _ decreased (توسيع البحث), _ decreases (توسيع البحث)
greater decrease » greatest decrease (توسيع البحث), greater increase (توسيع البحث), greater disease (توسيع البحث)
nn decrease » _ decrease (توسيع البحث), gy decreased (توسيع البحث), b1 decreased (توسيع البحث)
a decrease » _ decrease (توسيع البحث), _ decreased (توسيع البحث), _ decreases (توسيع البحث)
-
6841
Direct Observation of Liquid–Liquid Phase Separation and Core–Shell Morphology of PM<sub>2.5</sub> Collected from Three Northeast Asian Cities and Implications for N<sub>2</sub>O<s...
منشور في 2025"…As the shell becomes more viscous, the diffusivity of N<sub>2</sub>O<sub>5</sub> decreases, thereby lowering the N<sub>2</sub>O<sub>5</sub> uptake coefficient by 1–3 orders of magnitude and significantly restricting N<sub>2</sub>O<sub>5</sub> uptake. …"
-
6842
-
6843
Prediction of transition readiness.
منشور في 2025"…In most transition domains, help needed did not decrease with age and was not affected by function. …"
-
6844
Dataset visualization diagram.
منشور في 2025"…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …"
-
6845
Dataset sample images.
منشور في 2025"…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …"
-
6846
Performance comparison of different models.
منشور في 2025"…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …"
-
6847
C2f and BC2f module structure diagrams.
منشور في 2025"…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …"
-
6848
YOLOv8n detection results diagram.
منشور في 2025"…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …"
-
6849
YOLOv8n-BWG model structure diagram.
منشور في 2025"…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …"
-
6850
BiFormer structure diagram.
منشور في 2025"…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …"
-
6851
YOLOv8n-BWG detection results diagram.
منشور في 2025"…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …"
-
6852
GSConv module structure diagram.
منشور في 2025"…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …"
-
6853
Performance comparison of three loss functions.
منشور في 2025"…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …"
-
6854
mAP0.5 Curves of various models.
منشور في 2025"…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …"
-
6855
Network loss function change diagram.
منشور في 2025"…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …"
-
6856
Comparative diagrams of different indicators.
منشور في 2025"…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …"
-
6857
YOLOv8n structure diagram.
منشور في 2025"…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …"
-
6858
Geometric model of the binocular system.
منشور في 2025"…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …"
-
6859
Enhanced dataset sample images.
منشور في 2025"…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …"
-
6860
Table 1_Microplastics in focus: a silent disruptor of liver health- a systematic review.docx
منشور في 2025"…Six investigations using pluripotent-stem-cell-derived liver organoids confirmed and expanded upon these findings, demonstrating that both pristine and aged PS-MPs (1–10 µm) disrupt sulfur amino acid and iron homeostasis (e.g., increased serum cysteine, decreased hepatic cysteine, and disturbed homocysteine metabolism), impair mitochondrial bioenergetics, and lead to significant lipid accumulation after exposures lasting up to 500 h. …"