Search alternatives:
greatest decrease » treatment decreased (Expand Search), greater increase (Expand Search)
less decrease » teer decrease (Expand Search), we decrease (Expand Search), levels decreased (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
greatest decrease » treatment decreased (Expand Search), greater increase (Expand Search)
less decrease » teer decrease (Expand Search), we decrease (Expand Search), levels decreased (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
-
6741
-
6742
Dynamics of Solid–Liquid Compound Droplets on Cylindrically Concave Superhydrophobic Surfaces
Published 2025“…This study explores the dynamics of a deionized water droplet of 3 mm diameter impacting a freely placed glass bead of 1 mm diameter on superhydrophobic concave surfaces exhibiting a static contact angle of 153°. …”
-
6743
Dynamics of Solid–Liquid Compound Droplets on Cylindrically Concave Superhydrophobic Surfaces
Published 2025“…This study explores the dynamics of a deionized water droplet of 3 mm diameter impacting a freely placed glass bead of 1 mm diameter on superhydrophobic concave surfaces exhibiting a static contact angle of 153°. …”
-
6744
Dynamics of Solid–Liquid Compound Droplets on Cylindrically Concave Superhydrophobic Surfaces
Published 2025“…This study explores the dynamics of a deionized water droplet of 3 mm diameter impacting a freely placed glass bead of 1 mm diameter on superhydrophobic concave surfaces exhibiting a static contact angle of 153°. …”
-
6745
Dynamics of Solid–Liquid Compound Droplets on Cylindrically Concave Superhydrophobic Surfaces
Published 2025“…This study explores the dynamics of a deionized water droplet of 3 mm diameter impacting a freely placed glass bead of 1 mm diameter on superhydrophobic concave surfaces exhibiting a static contact angle of 153°. …”
-
6746
Dynamics of Solid–Liquid Compound Droplets on Cylindrically Concave Superhydrophobic Surfaces
Published 2025“…This study explores the dynamics of a deionized water droplet of 3 mm diameter impacting a freely placed glass bead of 1 mm diameter on superhydrophobic concave surfaces exhibiting a static contact angle of 153°. …”
-
6747
ZM Modifier.
Published 2025“…Experimental results show that the ZM modifier significantly improves the dynamic stability and rutting resistance of the mixture, with dynamic stability increasing to 5245 and rut depth decreasing to 2.26 mm at a dosage of 0.5%. …”
-
6748
Factor-level.
Published 2025“…Experimental results show that the ZM modifier significantly improves the dynamic stability and rutting resistance of the mixture, with dynamic stability increasing to 5245 and rut depth decreasing to 2.26 mm at a dosage of 0.5%. …”
-
6749
Gradation composition of asphalt mixture.
Published 2025“…Experimental results show that the ZM modifier significantly improves the dynamic stability and rutting resistance of the mixture, with dynamic stability increasing to 5245 and rut depth decreasing to 2.26 mm at a dosage of 0.5%. …”
-
6750
Technical specifications of mineral filler.
Published 2025“…Experimental results show that the ZM modifier significantly improves the dynamic stability and rutting resistance of the mixture, with dynamic stability increasing to 5245 and rut depth decreasing to 2.26 mm at a dosage of 0.5%. …”
-
6751
Technical indicators of coarse aggregate.
Published 2025“…Experimental results show that the ZM modifier significantly improves the dynamic stability and rutting resistance of the mixture, with dynamic stability increasing to 5245 and rut depth decreasing to 2.26 mm at a dosage of 0.5%. …”
-
6752
Technical specifications of fine aggregates.
Published 2025“…Experimental results show that the ZM modifier significantly improves the dynamic stability and rutting resistance of the mixture, with dynamic stability increasing to 5245 and rut depth decreasing to 2.26 mm at a dosage of 0.5%. …”
-
6753
Rutting test results of asphalt mixtures.
Published 2025“…Experimental results show that the ZM modifier significantly improves the dynamic stability and rutting resistance of the mixture, with dynamic stability increasing to 5245 and rut depth decreasing to 2.26 mm at a dosage of 0.5%. …”
-
6754
Gradation composition of asphalt mixture.
Published 2025“…Experimental results show that the ZM modifier significantly improves the dynamic stability and rutting resistance of the mixture, with dynamic stability increasing to 5245 and rut depth decreasing to 2.26 mm at a dosage of 0.5%. …”
-
6755
Results of the orthogonal test.
Published 2025“…Experimental results show that the ZM modifier significantly improves the dynamic stability and rutting resistance of the mixture, with dynamic stability increasing to 5245 and rut depth decreasing to 2.26 mm at a dosage of 0.5%. …”
-
6756
Rutting test results.
Published 2025“…Experimental results show that the ZM modifier significantly improves the dynamic stability and rutting resistance of the mixture, with dynamic stability increasing to 5245 and rut depth decreasing to 2.26 mm at a dosage of 0.5%. …”
-
6757
Technical Specifications of ZM Modifier.
Published 2025“…Experimental results show that the ZM modifier significantly improves the dynamic stability and rutting resistance of the mixture, with dynamic stability increasing to 5245 and rut depth decreasing to 2.26 mm at a dosage of 0.5%. …”
-
6758
Gradation curve of asphalt mixture.
Published 2025“…Experimental results show that the ZM modifier significantly improves the dynamic stability and rutting resistance of the mixture, with dynamic stability increasing to 5245 and rut depth decreasing to 2.26 mm at a dosage of 0.5%. …”
-
6759
Rutting test machine.
Published 2025“…Experimental results show that the ZM modifier significantly improves the dynamic stability and rutting resistance of the mixture, with dynamic stability increasing to 5245 and rut depth decreasing to 2.26 mm at a dosage of 0.5%. …”
-
6760
Basic performance indicators of base asphalt.
Published 2025“…Experimental results show that the ZM modifier significantly improves the dynamic stability and rutting resistance of the mixture, with dynamic stability increasing to 5245 and rut depth decreasing to 2.26 mm at a dosage of 0.5%. …”