Showing 6,841 - 6,860 results of 18,406 for search 'significantly ((less decrease) OR (((((mean decrease) OR (nn decrease))) OR (a decrease))))', query time: 0.47s Refine Results
  1. 6841

    Direct Observation of Liquid–Liquid Phase Separation and Core–Shell Morphology of PM<sub>2.5</sub> Collected from Three Northeast Asian Cities and Implications for N<sub>2</sub>O<s... by Mijung Song (13134633)

    Published 2025
    “…As the shell becomes more viscous, the diffusivity of N<sub>2</sub>O<sub>5</sub> decreases, thereby lowering the N<sub>2</sub>O<sub>5</sub> uptake coefficient by 1–3 orders of magnitude and significantly restricting N<sub>2</sub>O<sub>5</sub> uptake. …”
  2. 6842

    Direct Observation of Liquid–Liquid Phase Separation and Core–Shell Morphology of PM<sub>2.5</sub> Collected from Three Northeast Asian Cities and Implications for N<sub>2</sub>O<s... by Mijung Song (13134633)

    Published 2025
    “…As the shell becomes more viscous, the diffusivity of N<sub>2</sub>O<sub>5</sub> decreases, thereby lowering the N<sub>2</sub>O<sub>5</sub> uptake coefficient by 1–3 orders of magnitude and significantly restricting N<sub>2</sub>O<sub>5</sub> uptake. …”
  3. 6843

    Direct Observation of Liquid–Liquid Phase Separation and Core–Shell Morphology of PM<sub>2.5</sub> Collected from Three Northeast Asian Cities and Implications for N<sub>2</sub>O<s... by Mijung Song (13134633)

    Published 2025
    “…As the shell becomes more viscous, the diffusivity of N<sub>2</sub>O<sub>5</sub> decreases, thereby lowering the N<sub>2</sub>O<sub>5</sub> uptake coefficient by 1–3 orders of magnitude and significantly restricting N<sub>2</sub>O<sub>5</sub> uptake. …”
  4. 6844

    Direct Observation of Liquid–Liquid Phase Separation and Core–Shell Morphology of PM<sub>2.5</sub> Collected from Three Northeast Asian Cities and Implications for N<sub>2</sub>O<s... by Mijung Song (13134633)

    Published 2025
    “…As the shell becomes more viscous, the diffusivity of N<sub>2</sub>O<sub>5</sub> decreases, thereby lowering the N<sub>2</sub>O<sub>5</sub> uptake coefficient by 1–3 orders of magnitude and significantly restricting N<sub>2</sub>O<sub>5</sub> uptake. …”
  5. 6845
  6. 6846

    Dataset visualization diagram. by Yaojun Zhang (389482)

    Published 2025
    “…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
  7. 6847

    Dataset sample images. by Yaojun Zhang (389482)

    Published 2025
    “…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
  8. 6848

    Performance comparison of different models. by Yaojun Zhang (389482)

    Published 2025
    “…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
  9. 6849

    C2f and BC2f module structure diagrams. by Yaojun Zhang (389482)

    Published 2025
    “…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
  10. 6850

    YOLOv8n detection results diagram. by Yaojun Zhang (389482)

    Published 2025
    “…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
  11. 6851

    YOLOv8n-BWG model structure diagram. by Yaojun Zhang (389482)

    Published 2025
    “…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
  12. 6852

    BiFormer structure diagram. by Yaojun Zhang (389482)

    Published 2025
    “…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
  13. 6853

    YOLOv8n-BWG detection results diagram. by Yaojun Zhang (389482)

    Published 2025
    “…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
  14. 6854

    GSConv module structure diagram. by Yaojun Zhang (389482)

    Published 2025
    “…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
  15. 6855

    Performance comparison of three loss functions. by Yaojun Zhang (389482)

    Published 2025
    “…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
  16. 6856

    mAP0.5 Curves of various models. by Yaojun Zhang (389482)

    Published 2025
    “…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
  17. 6857

    Network loss function change diagram. by Yaojun Zhang (389482)

    Published 2025
    “…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
  18. 6858

    Comparative diagrams of different indicators. by Yaojun Zhang (389482)

    Published 2025
    “…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
  19. 6859

    YOLOv8n structure diagram. by Yaojun Zhang (389482)

    Published 2025
    “…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
  20. 6860

    Geometric model of the binocular system. by Yaojun Zhang (389482)

    Published 2025
    “…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”