-
1721
-
1722
-
1723
-
1724
-
1725
-
1726
-
1727
-
1728
-
1729
-
1730
-
1731
Performance comparison of ML models.
Published 2025“…Multi-spectral band images from Landsat-8 satellite images of a chosen land are employed from USGS Earth Resources Observation and Science (EROS) Center for extracting indices that are used for agricultural analysis, determining the vegetation index, water index, and salinity index of that land using K-means. Furthermore, crop yield is predicted using Linear Regression and Random Forest, achieving accuracies of 93.49% and 95.87%, respectively, while using RMSE (Root Mean Squared Error) as the loss function. …”
-
1732
Comparative data of different soil samples.
Published 2025“…Multi-spectral band images from Landsat-8 satellite images of a chosen land are employed from USGS Earth Resources Observation and Science (EROS) Center for extracting indices that are used for agricultural analysis, determining the vegetation index, water index, and salinity index of that land using K-means. Furthermore, crop yield is predicted using Linear Regression and Random Forest, achieving accuracies of 93.49% and 95.87%, respectively, while using RMSE (Root Mean Squared Error) as the loss function. …”
-
1733
Confusion matrix of random forest model.
Published 2025“…Multi-spectral band images from Landsat-8 satellite images of a chosen land are employed from USGS Earth Resources Observation and Science (EROS) Center for extracting indices that are used for agricultural analysis, determining the vegetation index, water index, and salinity index of that land using K-means. Furthermore, crop yield is predicted using Linear Regression and Random Forest, achieving accuracies of 93.49% and 95.87%, respectively, while using RMSE (Root Mean Squared Error) as the loss function. …”
-
1734
Sensor value scenario for fuzzy logic algorithm.
Published 2025“…Multi-spectral band images from Landsat-8 satellite images of a chosen land are employed from USGS Earth Resources Observation and Science (EROS) Center for extracting indices that are used for agricultural analysis, determining the vegetation index, water index, and salinity index of that land using K-means. Furthermore, crop yield is predicted using Linear Regression and Random Forest, achieving accuracies of 93.49% and 95.87%, respectively, while using RMSE (Root Mean Squared Error) as the loss function. …”
-
1735
Evaluation metrics of selected ML models.
Published 2025“…Multi-spectral band images from Landsat-8 satellite images of a chosen land are employed from USGS Earth Resources Observation and Science (EROS) Center for extracting indices that are used for agricultural analysis, determining the vegetation index, water index, and salinity index of that land using K-means. Furthermore, crop yield is predicted using Linear Regression and Random Forest, achieving accuracies of 93.49% and 95.87%, respectively, while using RMSE (Root Mean Squared Error) as the loss function. …”
-
1736
Block diagram of the proposed system.
Published 2025“…Multi-spectral band images from Landsat-8 satellite images of a chosen land are employed from USGS Earth Resources Observation and Science (EROS) Center for extracting indices that are used for agricultural analysis, determining the vegetation index, water index, and salinity index of that land using K-means. Furthermore, crop yield is predicted using Linear Regression and Random Forest, achieving accuracies of 93.49% and 95.87%, respectively, while using RMSE (Root Mean Squared Error) as the loss function. …”
-
1737
Chart for applicable amount of fertilizers.
Published 2025“…Multi-spectral band images from Landsat-8 satellite images of a chosen land are employed from USGS Earth Resources Observation and Science (EROS) Center for extracting indices that are used for agricultural analysis, determining the vegetation index, water index, and salinity index of that land using K-means. Furthermore, crop yield is predicted using Linear Regression and Random Forest, achieving accuracies of 93.49% and 95.87%, respectively, while using RMSE (Root Mean Squared Error) as the loss function. …”
-
1738
Cost analysis of irrigation controller unit.
Published 2025“…Multi-spectral band images from Landsat-8 satellite images of a chosen land are employed from USGS Earth Resources Observation and Science (EROS) Center for extracting indices that are used for agricultural analysis, determining the vegetation index, water index, and salinity index of that land using K-means. Furthermore, crop yield is predicted using Linear Regression and Random Forest, achieving accuracies of 93.49% and 95.87%, respectively, while using RMSE (Root Mean Squared Error) as the loss function. …”
-
1739
Run times of two algorithms.
Published 2025“…Multi-spectral band images from Landsat-8 satellite images of a chosen land are employed from USGS Earth Resources Observation and Science (EROS) Center for extracting indices that are used for agricultural analysis, determining the vegetation index, water index, and salinity index of that land using K-means. Furthermore, crop yield is predicted using Linear Regression and Random Forest, achieving accuracies of 93.49% and 95.87%, respectively, while using RMSE (Root Mean Squared Error) as the loss function. …”
-
1740
Metals concentrations in selected coal samples.
Published 2024“…After BAI-RCD treatment, both cell lines showed a decrease in antioxidant stress measures (SOD, CAT, and GSH) and a significant (<i>p</i> < 0.001) increase in oxidative stress parameters (NADPH, MPO, LPO, and PC). …”