Showing 201 - 220 results of 815 for search 'significantly ((longer decrease) OR (largest decrease))', query time: 0.29s Refine Results
  1. 201
  2. 202
  3. 203
  4. 204
  5. 205
  6. 206
  7. 207
  8. 208
  9. 209
  10. 210
  11. 211
  12. 212
  13. 213
  14. 214

    Comparison with Existing Studies. by Na Zhao (112953)

    Published 2025
    “…The results indicate that: (1) the presence of pores prolongs both the time to failure and the onset of the AE burst stage, with longer durations observed at higher pore dip angles; (2) AE signal amplitude and frequency vary significantly across different loading stages, and the b-value exhibits an “increase–fluctuation–decrease” trend, with the decreasing stage serving as a precursor to rock instability; (3) pore dip angle strongly influences crack propagation types: dip angles of 0°–30° favor axial cracks and through-going wing cracks, 45°–75° angles tend to induce co-planar and wing crack connectivity, while 90° angles cause crack deviation, hindering through-going failure; (4) intact rock fails in a tensile–shear mixed mode, whereas the number of shear cracks in rocks with pores initially increases and then decreases with dip angle, reaching a maximum at 45°, resulting in shear-dominated failure. …”
  15. 215

    Specimen Preparation and Experimental Setup. by Na Zhao (112953)

    Published 2025
    “…The results indicate that: (1) the presence of pores prolongs both the time to failure and the onset of the AE burst stage, with longer durations observed at higher pore dip angles; (2) AE signal amplitude and frequency vary significantly across different loading stages, and the b-value exhibits an “increase–fluctuation–decrease” trend, with the decreasing stage serving as a precursor to rock instability; (3) pore dip angle strongly influences crack propagation types: dip angles of 0°–30° favor axial cracks and through-going wing cracks, 45°–75° angles tend to induce co-planar and wing crack connectivity, while 90° angles cause crack deviation, hindering through-going failure; (4) intact rock fails in a tensile–shear mixed mode, whereas the number of shear cracks in rocks with pores initially increases and then decreases with dip angle, reaching a maximum at 45°, resulting in shear-dominated failure. …”
  16. 216

    UCS texts data. by Na Zhao (112953)

    Published 2025
    “…The results indicate that: (1) the presence of pores prolongs both the time to failure and the onset of the AE burst stage, with longer durations observed at higher pore dip angles; (2) AE signal amplitude and frequency vary significantly across different loading stages, and the b-value exhibits an “increase–fluctuation–decrease” trend, with the decreasing stage serving as a precursor to rock instability; (3) pore dip angle strongly influences crack propagation types: dip angles of 0°–30° favor axial cracks and through-going wing cracks, 45°–75° angles tend to induce co-planar and wing crack connectivity, while 90° angles cause crack deviation, hindering through-going failure; (4) intact rock fails in a tensile–shear mixed mode, whereas the number of shear cracks in rocks with pores initially increases and then decreases with dip angle, reaching a maximum at 45°, resulting in shear-dominated failure. …”
  17. 217
  18. 218

    Detailed information of the observation datasets. by Weidong Ji (129916)

    Published 2025
    “…Generally speaking, there is no clear linear relationship between scores and the other variables. On longer time scales (6–24 hours), the score and correlation between ERA5 and observations further increased, while the centered root-mean-square error (CRMSE) and standard deviation decrease. 4) Hourly wind data with a regular spatial distribution in ERA5 reanalysis provides valuable information for further detailed research on meteorology or renewable energy perspectives, but some inherent shortcomings should be considered.…”
  19. 219

    General technical specification for GW154/6700. by Weidong Ji (129916)

    Published 2025
    “…Generally speaking, there is no clear linear relationship between scores and the other variables. On longer time scales (6–24 hours), the score and correlation between ERA5 and observations further increased, while the centered root-mean-square error (CRMSE) and standard deviation decrease. 4) Hourly wind data with a regular spatial distribution in ERA5 reanalysis provides valuable information for further detailed research on meteorology or renewable energy perspectives, but some inherent shortcomings should be considered.…”
  20. 220