بدائل البحث:
longer decrease » larger decrease (توسيع البحث), largest decrease (توسيع البحث)
linear decrease » linear increase (توسيع البحث)
longer decrease » larger decrease (توسيع البحث), largest decrease (توسيع البحث)
linear decrease » linear increase (توسيع البحث)
-
381
-
382
Schematic representation of the studied populations at the time of study sampling.
منشور في 2024الموضوعات: -
383
-
384
-
385
-
386
Comparison of immune and cellular markers of aging among PHIVAYA subgroups.
منشور في 2024الموضوعات: -
387
Immunological and cellular aging biomarkers in Suppressed (S) and Not Suppressed (NS) PHIVAYA.
منشور في 2024الموضوعات: -
388
Correlation plot between HIV reservoir and immune and cellular markers in PHIVAYA.
منشور في 2024الموضوعات: -
389
-
390
Comparison with Existing Studies.
منشور في 2025"…The results indicate that: (1) the presence of pores prolongs both the time to failure and the onset of the AE burst stage, with longer durations observed at higher pore dip angles; (2) AE signal amplitude and frequency vary significantly across different loading stages, and the b-value exhibits an “increase–fluctuation–decrease” trend, with the decreasing stage serving as a precursor to rock instability; (3) pore dip angle strongly influences crack propagation types: dip angles of 0°–30° favor axial cracks and through-going wing cracks, 45°–75° angles tend to induce co-planar and wing crack connectivity, while 90° angles cause crack deviation, hindering through-going failure; (4) intact rock fails in a tensile–shear mixed mode, whereas the number of shear cracks in rocks with pores initially increases and then decreases with dip angle, reaching a maximum at 45°, resulting in shear-dominated failure. …"
-
391
Specimen Preparation and Experimental Setup.
منشور في 2025"…The results indicate that: (1) the presence of pores prolongs both the time to failure and the onset of the AE burst stage, with longer durations observed at higher pore dip angles; (2) AE signal amplitude and frequency vary significantly across different loading stages, and the b-value exhibits an “increase–fluctuation–decrease” trend, with the decreasing stage serving as a precursor to rock instability; (3) pore dip angle strongly influences crack propagation types: dip angles of 0°–30° favor axial cracks and through-going wing cracks, 45°–75° angles tend to induce co-planar and wing crack connectivity, while 90° angles cause crack deviation, hindering through-going failure; (4) intact rock fails in a tensile–shear mixed mode, whereas the number of shear cracks in rocks with pores initially increases and then decreases with dip angle, reaching a maximum at 45°, resulting in shear-dominated failure. …"
-
392
UCS texts data.
منشور في 2025"…The results indicate that: (1) the presence of pores prolongs both the time to failure and the onset of the AE burst stage, with longer durations observed at higher pore dip angles; (2) AE signal amplitude and frequency vary significantly across different loading stages, and the b-value exhibits an “increase–fluctuation–decrease” trend, with the decreasing stage serving as a precursor to rock instability; (3) pore dip angle strongly influences crack propagation types: dip angles of 0°–30° favor axial cracks and through-going wing cracks, 45°–75° angles tend to induce co-planar and wing crack connectivity, while 90° angles cause crack deviation, hindering through-going failure; (4) intact rock fails in a tensile–shear mixed mode, whereas the number of shear cracks in rocks with pores initially increases and then decreases with dip angle, reaching a maximum at 45°, resulting in shear-dominated failure. …"
-
393
-
394
-
395
-
396
-
397
-
398
-
399
-
400