Showing 3,741 - 3,760 results of 7,129 for search 'significantly ((lower decrease) OR (((greater decrease) OR (mean decrease))))', query time: 0.45s Refine Results
  1. 3741

    Grid independence verification. by Ming Zhang (9736)

    Published 2025
    “…Between the second and third sand-blocking fences, when the height of sand-blocking fence is 2.5m, the increase of wind speed is 13.87% lower than that of 2m height. The decrease is the largest, and sand particles are easy to deposit here in large quantities. …”
  2. 3742

    Model and meshes. by Maogang Tian (21485116)

    Published 2025
    “…The results demonstrate that under identical loading conditions, the maximum displacement of the VIPF (20.63 mm) is 23.8% lower than that of the VPF (27.06 mm). The outer ring of inclined piles in the VIPF significantly enhances structural stiffness through spatial synergy, achieving uniform load distribution and effective redistribution of pile-body internal forces. …”
  3. 3743

    Shearing forces in the tension zone. by Maogang Tian (21485116)

    Published 2025
    “…The results demonstrate that under identical loading conditions, the maximum displacement of the VIPF (20.63 mm) is 23.8% lower than that of the VPF (27.06 mm). The outer ring of inclined piles in the VIPF significantly enhances structural stiffness through spatial synergy, achieving uniform load distribution and effective redistribution of pile-body internal forces. …”
  4. 3744

    Pile foundation section. by Maogang Tian (21485116)

    Published 2025
    “…The results demonstrate that under identical loading conditions, the maximum displacement of the VIPF (20.63 mm) is 23.8% lower than that of the VPF (27.06 mm). The outer ring of inclined piles in the VIPF significantly enhances structural stiffness through spatial synergy, achieving uniform load distribution and effective redistribution of pile-body internal forces. …”
  5. 3745

    Shearing force in the pressure zone. by Maogang Tian (21485116)

    Published 2025
    “…The results demonstrate that under identical loading conditions, the maximum displacement of the VIPF (20.63 mm) is 23.8% lower than that of the VPF (27.06 mm). The outer ring of inclined piles in the VIPF significantly enhances structural stiffness through spatial synergy, achieving uniform load distribution and effective redistribution of pile-body internal forces. …”
  6. 3746

    Strain-stress maps of vertical pile foundation. by Maogang Tian (21485116)

    Published 2025
    “…The results demonstrate that under identical loading conditions, the maximum displacement of the VIPF (20.63 mm) is 23.8% lower than that of the VPF (27.06 mm). The outer ring of inclined piles in the VIPF significantly enhances structural stiffness through spatial synergy, achieving uniform load distribution and effective redistribution of pile-body internal forces. …”
  7. 3747

    Displacement-inclination variation graph. by Maogang Tian (21485116)

    Published 2025
    “…The results demonstrate that under identical loading conditions, the maximum displacement of the VIPF (20.63 mm) is 23.8% lower than that of the VPF (27.06 mm). The outer ring of inclined piles in the VIPF significantly enhances structural stiffness through spatial synergy, achieving uniform load distribution and effective redistribution of pile-body internal forces. …”
  8. 3748

    Soil modeling and mechanical parameters. by Maogang Tian (21485116)

    Published 2025
    “…The results demonstrate that under identical loading conditions, the maximum displacement of the VIPF (20.63 mm) is 23.8% lower than that of the VPF (27.06 mm). The outer ring of inclined piles in the VIPF significantly enhances structural stiffness through spatial synergy, achieving uniform load distribution and effective redistribution of pile-body internal forces. …”
  9. 3749

    Location of monitored piles. by Maogang Tian (21485116)

    Published 2025
    “…The results demonstrate that under identical loading conditions, the maximum displacement of the VIPF (20.63 mm) is 23.8% lower than that of the VPF (27.06 mm). The outer ring of inclined piles in the VIPF significantly enhances structural stiffness through spatial synergy, achieving uniform load distribution and effective redistribution of pile-body internal forces. …”
  10. 3750

    Axial force in the pressure zone. by Maogang Tian (21485116)

    Published 2025
    “…The results demonstrate that under identical loading conditions, the maximum displacement of the VIPF (20.63 mm) is 23.8% lower than that of the VPF (27.06 mm). The outer ring of inclined piles in the VIPF significantly enhances structural stiffness through spatial synergy, achieving uniform load distribution and effective redistribution of pile-body internal forces. …”
  11. 3751

    Pile-soil interaction. by Maogang Tian (21485116)

    Published 2025
    “…The results demonstrate that under identical loading conditions, the maximum displacement of the VIPF (20.63 mm) is 23.8% lower than that of the VPF (27.06 mm). The outer ring of inclined piles in the VIPF significantly enhances structural stiffness through spatial synergy, achieving uniform load distribution and effective redistribution of pile-body internal forces. …”
  12. 3752

    Bending moment in the tension zone. by Maogang Tian (21485116)

    Published 2025
    “…The results demonstrate that under identical loading conditions, the maximum displacement of the VIPF (20.63 mm) is 23.8% lower than that of the VPF (27.06 mm). The outer ring of inclined piles in the VIPF significantly enhances structural stiffness through spatial synergy, achieving uniform load distribution and effective redistribution of pile-body internal forces. …”
  13. 3753

    Sketch of forces on vertical and inclined piles. by Maogang Tian (21485116)

    Published 2025
    “…The results demonstrate that under identical loading conditions, the maximum displacement of the VIPF (20.63 mm) is 23.8% lower than that of the VPF (27.06 mm). The outer ring of inclined piles in the VIPF significantly enhances structural stiffness through spatial synergy, achieving uniform load distribution and effective redistribution of pile-body internal forces. …”
  14. 3754

    Displacement cloud maps. by Maogang Tian (21485116)

    Published 2025
    “…The results demonstrate that under identical loading conditions, the maximum displacement of the VIPF (20.63 mm) is 23.8% lower than that of the VPF (27.06 mm). The outer ring of inclined piles in the VIPF significantly enhances structural stiffness through spatial synergy, achieving uniform load distribution and effective redistribution of pile-body internal forces. …”
  15. 3755

    Morphing mesh. by Maogang Tian (21485116)

    Published 2025
    “…The results demonstrate that under identical loading conditions, the maximum displacement of the VIPF (20.63 mm) is 23.8% lower than that of the VPF (27.06 mm). The outer ring of inclined piles in the VIPF significantly enhances structural stiffness through spatial synergy, achieving uniform load distribution and effective redistribution of pile-body internal forces. …”
  16. 3756

    Bending moment in the pressure zone. by Maogang Tian (21485116)

    Published 2025
    “…The results demonstrate that under identical loading conditions, the maximum displacement of the VIPF (20.63 mm) is 23.8% lower than that of the VPF (27.06 mm). The outer ring of inclined piles in the VIPF significantly enhances structural stiffness through spatial synergy, achieving uniform load distribution and effective redistribution of pile-body internal forces. …”
  17. 3757

    Axial forces in the tension zone. by Maogang Tian (21485116)

    Published 2025
    “…The results demonstrate that under identical loading conditions, the maximum displacement of the VIPF (20.63 mm) is 23.8% lower than that of the VPF (27.06 mm). The outer ring of inclined piles in the VIPF significantly enhances structural stiffness through spatial synergy, achieving uniform load distribution and effective redistribution of pile-body internal forces. …”
  18. 3758

    VPF and VIPF. by Maogang Tian (21485116)

    Published 2025
    “…The results demonstrate that under identical loading conditions, the maximum displacement of the VIPF (20.63 mm) is 23.8% lower than that of the VPF (27.06 mm). The outer ring of inclined piles in the VIPF significantly enhances structural stiffness through spatial synergy, achieving uniform load distribution and effective redistribution of pile-body internal forces. …”
  19. 3759

    MXene-Coated Liquid Metal Nanodroplet Aggregates by Mason Zadan (8667870)

    Published 2025
    “…In contrast to silicone-based composites containing LM droplets or MXene nanosheets alone, these MXene-LM-silicone-based composites exhibit an exponential increase in thermal and electrical conductivity with decreasing interfacial thickness with significantly lower LM volume fractions (25 vol %) while avoiding LM rupture and bleed-out. …”
  20. 3760

    MXene-Coated Liquid Metal Nanodroplet Aggregates by Mason Zadan (8667870)

    Published 2025
    “…In contrast to silicone-based composites containing LM droplets or MXene nanosheets alone, these MXene-LM-silicone-based composites exhibit an exponential increase in thermal and electrical conductivity with decreasing interfacial thickness with significantly lower LM volume fractions (25 vol %) while avoiding LM rupture and bleed-out. …”