بدائل البحث:
greater decrease » greatest decrease (توسيع البحث), greater increase (توسيع البحث), greater disease (توسيع البحث)
lower decrease » larger decrease (توسيع البحث), linear decrease (توسيع البحث), we decrease (توسيع البحث)
teer decrease » mean decrease (توسيع البحث)
greater decrease » greatest decrease (توسيع البحث), greater increase (توسيع البحث), greater disease (توسيع البحث)
lower decrease » larger decrease (توسيع البحث), linear decrease (توسيع البحث), we decrease (توسيع البحث)
teer decrease » mean decrease (توسيع البحث)
-
2281
Result of comparison of different lightweight.
منشور في 2025"…Secondly, a lightweight convolutional module is introduced to replace the standard convolutions in the Efficient Long-range Aggregation Network (ELAN-A) module, and the channel pruning techniques are applied to further decrease the model’s complexity. Finally, the experiment significantly enhanced the efficiency of feature extraction and the detection accuracy of the model algorithm through the integration of the Dynamic Head (DyHead) module, the Content-Aware Re-Assembly of Features (CARAFE) module, and the incorporation of knowledge distillation techniques. …"
-
2282
DyHead Structure.
منشور في 2025"…Secondly, a lightweight convolutional module is introduced to replace the standard convolutions in the Efficient Long-range Aggregation Network (ELAN-A) module, and the channel pruning techniques are applied to further decrease the model’s complexity. Finally, the experiment significantly enhanced the efficiency of feature extraction and the detection accuracy of the model algorithm through the integration of the Dynamic Head (DyHead) module, the Content-Aware Re-Assembly of Features (CARAFE) module, and the incorporation of knowledge distillation techniques. …"
-
2283
The parameters of the training phase.
منشور في 2025"…Secondly, a lightweight convolutional module is introduced to replace the standard convolutions in the Efficient Long-range Aggregation Network (ELAN-A) module, and the channel pruning techniques are applied to further decrease the model’s complexity. Finally, the experiment significantly enhanced the efficiency of feature extraction and the detection accuracy of the model algorithm through the integration of the Dynamic Head (DyHead) module, the Content-Aware Re-Assembly of Features (CARAFE) module, and the incorporation of knowledge distillation techniques. …"
-
2284
Structure of GSConv network.
منشور في 2025"…Secondly, a lightweight convolutional module is introduced to replace the standard convolutions in the Efficient Long-range Aggregation Network (ELAN-A) module, and the channel pruning techniques are applied to further decrease the model’s complexity. Finally, the experiment significantly enhanced the efficiency of feature extraction and the detection accuracy of the model algorithm through the integration of the Dynamic Head (DyHead) module, the Content-Aware Re-Assembly of Features (CARAFE) module, and the incorporation of knowledge distillation techniques. …"
-
2285
Comparison experiment of accuracy improvement.
منشور في 2025"…Secondly, a lightweight convolutional module is introduced to replace the standard convolutions in the Efficient Long-range Aggregation Network (ELAN-A) module, and the channel pruning techniques are applied to further decrease the model’s complexity. Finally, the experiment significantly enhanced the efficiency of feature extraction and the detection accuracy of the model algorithm through the integration of the Dynamic Head (DyHead) module, the Content-Aware Re-Assembly of Features (CARAFE) module, and the incorporation of knowledge distillation techniques. …"
-
2286
Improved model distillation structure.
منشور في 2025"…Secondly, a lightweight convolutional module is introduced to replace the standard convolutions in the Efficient Long-range Aggregation Network (ELAN-A) module, and the channel pruning techniques are applied to further decrease the model’s complexity. Finally, the experiment significantly enhanced the efficiency of feature extraction and the detection accuracy of the model algorithm through the integration of the Dynamic Head (DyHead) module, the Content-Aware Re-Assembly of Features (CARAFE) module, and the incorporation of knowledge distillation techniques. …"
-
2287
S1 Graphical abstract -
منشور في 2024"…</p><p>Conclusions</p><p>In patients with MVD-STEMI, the incidence of MACEs was lower in FCR than in FIR, and the decrease was particularly significant in the DM cohort. …"
-
2288
Procedural characteristics.
منشور في 2024"…</p><p>Conclusions</p><p>In patients with MVD-STEMI, the incidence of MACEs was lower in FCR than in FIR, and the decrease was particularly significant in the DM cohort. …"
-
2289
Clinical characteristics.
منشور في 2024"…</p><p>Conclusions</p><p>In patients with MVD-STEMI, the incidence of MACEs was lower in FCR than in FIR, and the decrease was particularly significant in the DM cohort. …"
-
2290
Study flowchart.
منشور في 2024"…</p><p>Conclusions</p><p>In patients with MVD-STEMI, the incidence of MACEs was lower in FCR than in FIR, and the decrease was particularly significant in the DM cohort. …"
-
2291
Data.
منشور في 2024"…</p><p>Conclusions</p><p>In patients with MVD-STEMI, the incidence of MACEs was lower in FCR than in FIR, and the decrease was particularly significant in the DM cohort. …"
-
2292
The upper plots show the changes in ZMK for summer and autumn.
منشور في 2025"…<p>Red indicates an increasing trend and green indicates a decreasing trend in fire density. The lower plots show significant increasing and decreasing trends for different biomes in Iran.…"
-
2293
-
2294
Effect of the Surface Peak–Valley Features on Droplet Impact Dynamics under Leidenfrost Temperature
منشور في 2024"…Specifically, the Leidenfrost temperature on micropit surfaces increases with greater micropit area occupancy, while it decreases on micropillar surfaces under similar conditions, which is mainly attributed to the differential impact of area occupancy on droplet heat transfer efficiency. …"
-
2295
Effect of the Surface Peak–Valley Features on Droplet Impact Dynamics under Leidenfrost Temperature
منشور في 2024"…Specifically, the Leidenfrost temperature on micropit surfaces increases with greater micropit area occupancy, while it decreases on micropillar surfaces under similar conditions, which is mainly attributed to the differential impact of area occupancy on droplet heat transfer efficiency. …"
-
2296
Effect of the Surface Peak–Valley Features on Droplet Impact Dynamics under Leidenfrost Temperature
منشور في 2024"…Specifically, the Leidenfrost temperature on micropit surfaces increases with greater micropit area occupancy, while it decreases on micropillar surfaces under similar conditions, which is mainly attributed to the differential impact of area occupancy on droplet heat transfer efficiency. …"
-
2297
Effect of the Surface Peak–Valley Features on Droplet Impact Dynamics under Leidenfrost Temperature
منشور في 2024"…Specifically, the Leidenfrost temperature on micropit surfaces increases with greater micropit area occupancy, while it decreases on micropillar surfaces under similar conditions, which is mainly attributed to the differential impact of area occupancy on droplet heat transfer efficiency. …"
-
2298
Effect of the Surface Peak–Valley Features on Droplet Impact Dynamics under Leidenfrost Temperature
منشور في 2024"…Specifically, the Leidenfrost temperature on micropit surfaces increases with greater micropit area occupancy, while it decreases on micropillar surfaces under similar conditions, which is mainly attributed to the differential impact of area occupancy on droplet heat transfer efficiency. …"
-
2299
Effect of the Surface Peak–Valley Features on Droplet Impact Dynamics under Leidenfrost Temperature
منشور في 2024"…Specifically, the Leidenfrost temperature on micropit surfaces increases with greater micropit area occupancy, while it decreases on micropillar surfaces under similar conditions, which is mainly attributed to the differential impact of area occupancy on droplet heat transfer efficiency. …"
-
2300
Effect of the Surface Peak–Valley Features on Droplet Impact Dynamics under Leidenfrost Temperature
منشور في 2024"…Specifically, the Leidenfrost temperature on micropit surfaces increases with greater micropit area occupancy, while it decreases on micropillar surfaces under similar conditions, which is mainly attributed to the differential impact of area occupancy on droplet heat transfer efficiency. …"