يعرض 1,841 - 1,860 نتائج من 3,972 نتيجة بحث عن 'significantly ((lower decrease) OR (((teer decrease) OR (greatest decrease))))', وقت الاستعلام: 0.44s تنقيح النتائج
  1. 1841
  2. 1842
  3. 1843

    CONSORT diagram. حسب Bon-Wook Koo (13773694)

    منشور في 2024
    "…The overall proportion of patients who experienced any adverse events was 57.8% in the GDFT group and 70.1% in the conventional group (P = 0.038), of which the occurrence of pleural effusion was significantly lower in the GDFT group than in the conventional group (9.5% vs. 19.7%; P = 0.024). …"
  4. 1844

    Raw data. حسب Bon-Wook Koo (13773694)

    منشور في 2024
    "…The overall proportion of patients who experienced any adverse events was 57.8% in the GDFT group and 70.1% in the conventional group (P = 0.038), of which the occurrence of pleural effusion was significantly lower in the GDFT group than in the conventional group (9.5% vs. 19.7%; P = 0.024). …"
  5. 1845

    Postoperative outcomes. حسب Bon-Wook Koo (13773694)

    منشور في 2024
    "…The overall proportion of patients who experienced any adverse events was 57.8% in the GDFT group and 70.1% in the conventional group (P = 0.038), of which the occurrence of pleural effusion was significantly lower in the GDFT group than in the conventional group (9.5% vs. 19.7%; P = 0.024). …"
  6. 1846

    Postoperative complications. حسب Bon-Wook Koo (13773694)

    منشور في 2024
    "…The overall proportion of patients who experienced any adverse events was 57.8% in the GDFT group and 70.1% in the conventional group (P = 0.038), of which the occurrence of pleural effusion was significantly lower in the GDFT group than in the conventional group (9.5% vs. 19.7%; P = 0.024). …"
  7. 1847
  8. 1848

    Loading mode. حسب Maogang Tian (21485116)

    منشور في 2025
    "…The results demonstrate that under identical loading conditions, the maximum displacement of the VIPF (20.63 mm) is 23.8% lower than that of the VPF (27.06 mm). The outer ring of inclined piles in the VIPF significantly enhances structural stiffness through spatial synergy, achieving uniform load distribution and effective redistribution of pile-body internal forces. …"
  9. 1849

    Model and meshes. حسب Maogang Tian (21485116)

    منشور في 2025
    "…The results demonstrate that under identical loading conditions, the maximum displacement of the VIPF (20.63 mm) is 23.8% lower than that of the VPF (27.06 mm). The outer ring of inclined piles in the VIPF significantly enhances structural stiffness through spatial synergy, achieving uniform load distribution and effective redistribution of pile-body internal forces. …"
  10. 1850

    Shearing forces in the tension zone. حسب Maogang Tian (21485116)

    منشور في 2025
    "…The results demonstrate that under identical loading conditions, the maximum displacement of the VIPF (20.63 mm) is 23.8% lower than that of the VPF (27.06 mm). The outer ring of inclined piles in the VIPF significantly enhances structural stiffness through spatial synergy, achieving uniform load distribution and effective redistribution of pile-body internal forces. …"
  11. 1851

    Pile foundation section. حسب Maogang Tian (21485116)

    منشور في 2025
    "…The results demonstrate that under identical loading conditions, the maximum displacement of the VIPF (20.63 mm) is 23.8% lower than that of the VPF (27.06 mm). The outer ring of inclined piles in the VIPF significantly enhances structural stiffness through spatial synergy, achieving uniform load distribution and effective redistribution of pile-body internal forces. …"
  12. 1852

    Shearing force in the pressure zone. حسب Maogang Tian (21485116)

    منشور في 2025
    "…The results demonstrate that under identical loading conditions, the maximum displacement of the VIPF (20.63 mm) is 23.8% lower than that of the VPF (27.06 mm). The outer ring of inclined piles in the VIPF significantly enhances structural stiffness through spatial synergy, achieving uniform load distribution and effective redistribution of pile-body internal forces. …"
  13. 1853

    Strain-stress maps of vertical pile foundation. حسب Maogang Tian (21485116)

    منشور في 2025
    "…The results demonstrate that under identical loading conditions, the maximum displacement of the VIPF (20.63 mm) is 23.8% lower than that of the VPF (27.06 mm). The outer ring of inclined piles in the VIPF significantly enhances structural stiffness through spatial synergy, achieving uniform load distribution and effective redistribution of pile-body internal forces. …"
  14. 1854

    Displacement-inclination variation graph. حسب Maogang Tian (21485116)

    منشور في 2025
    "…The results demonstrate that under identical loading conditions, the maximum displacement of the VIPF (20.63 mm) is 23.8% lower than that of the VPF (27.06 mm). The outer ring of inclined piles in the VIPF significantly enhances structural stiffness through spatial synergy, achieving uniform load distribution and effective redistribution of pile-body internal forces. …"
  15. 1855

    Soil modeling and mechanical parameters. حسب Maogang Tian (21485116)

    منشور في 2025
    "…The results demonstrate that under identical loading conditions, the maximum displacement of the VIPF (20.63 mm) is 23.8% lower than that of the VPF (27.06 mm). The outer ring of inclined piles in the VIPF significantly enhances structural stiffness through spatial synergy, achieving uniform load distribution and effective redistribution of pile-body internal forces. …"
  16. 1856

    Location of monitored piles. حسب Maogang Tian (21485116)

    منشور في 2025
    "…The results demonstrate that under identical loading conditions, the maximum displacement of the VIPF (20.63 mm) is 23.8% lower than that of the VPF (27.06 mm). The outer ring of inclined piles in the VIPF significantly enhances structural stiffness through spatial synergy, achieving uniform load distribution and effective redistribution of pile-body internal forces. …"
  17. 1857

    Axial force in the pressure zone. حسب Maogang Tian (21485116)

    منشور في 2025
    "…The results demonstrate that under identical loading conditions, the maximum displacement of the VIPF (20.63 mm) is 23.8% lower than that of the VPF (27.06 mm). The outer ring of inclined piles in the VIPF significantly enhances structural stiffness through spatial synergy, achieving uniform load distribution and effective redistribution of pile-body internal forces. …"
  18. 1858

    Pile-soil interaction. حسب Maogang Tian (21485116)

    منشور في 2025
    "…The results demonstrate that under identical loading conditions, the maximum displacement of the VIPF (20.63 mm) is 23.8% lower than that of the VPF (27.06 mm). The outer ring of inclined piles in the VIPF significantly enhances structural stiffness through spatial synergy, achieving uniform load distribution and effective redistribution of pile-body internal forces. …"
  19. 1859

    Bending moment in the tension zone. حسب Maogang Tian (21485116)

    منشور في 2025
    "…The results demonstrate that under identical loading conditions, the maximum displacement of the VIPF (20.63 mm) is 23.8% lower than that of the VPF (27.06 mm). The outer ring of inclined piles in the VIPF significantly enhances structural stiffness through spatial synergy, achieving uniform load distribution and effective redistribution of pile-body internal forces. …"
  20. 1860

    Sketch of forces on vertical and inclined piles. حسب Maogang Tian (21485116)

    منشور في 2025
    "…The results demonstrate that under identical loading conditions, the maximum displacement of the VIPF (20.63 mm) is 23.8% lower than that of the VPF (27.06 mm). The outer ring of inclined piles in the VIPF significantly enhances structural stiffness through spatial synergy, achieving uniform load distribution and effective redistribution of pile-body internal forces. …"