Search alternatives:
we decrease » _ decrease (Expand Search), a decrease (Expand Search), teer decrease (Expand Search)
nn decrease » _ decrease (Expand Search), a decrease (Expand Search), gy decreased (Expand Search)
we decrease » _ decrease (Expand Search), a decrease (Expand Search), teer decrease (Expand Search)
nn decrease » _ decrease (Expand Search), a decrease (Expand Search), gy decreased (Expand Search)
-
821
-
822
-
823
-
824
-
825
-
826
-
827
-
828
Prolonged starvation leads to a delay in cell cycle re-entry and decrease in H3K27ac in Vasa2+/Piwi1+ cells.
Published 2025“…During starvation (T<sub>5ds</sub>, T<sub>20ds</sub>), MFI levels of H3K27ac progressively decreased <b>(F)</b> while levels H3K27me3 did not change significantly <b>(G)</b>. …”
-
829
-
830
Supplementary Material for: Significant Dry Weight Reduction After Transition from Peritoneal Dialysis to Hemodialysis
Published 2025“…After transitioning to HD, body weight decreased significantly, with a reduction of -2.8 kg at one month, -5.3 kg at three months, and -7.5 kg one year post-transition. …”
-
831
Cohort characteristics.
Published 2025“…</p><p>Results</p><p>Upon initiation of CPB we observed a significant decrease in arterial whole blood redox potential (101.90 mV + /- 11.52 vs. 41.80 mV + /- 10,26; p < 0.0001). …”
-
832
Analytical framework and statistical methods.
Published 2024“…Our findings reveal significant variations in income insecurity and social protection responses across these groups. the pandemic had a significant impact on household incomes globally, with lower-middle-income countries experiencing the most significant income reductions. …”
-
833
Theoretical frameworks of social protection.
Published 2024“…Our findings reveal significant variations in income insecurity and social protection responses across these groups. the pandemic had a significant impact on household incomes globally, with lower-middle-income countries experiencing the most significant income reductions. …”
-
834
Structure diagram of ensemble model.
Published 2024“…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …”
-
835
Fitting formula parameter table.
Published 2024“…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …”
-
836
Test plan.
Published 2024“…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …”
-
837
Fitting surface parameters.
Published 2024“…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …”
-
838
Model generalisation validation error analysis.
Published 2024“…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …”
-
839
Empirical model prediction error analysis.
Published 2024“…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …”
-
840
Fitting curve parameters.
Published 2024“…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …”