يعرض 3,241 - 3,260 نتائج من 8,137 نتيجة بحث عن 'significantly ((observed decrease) OR (((mean decrease) OR (greater decrease))))', وقت الاستعلام: 0.37s تنقيح النتائج
  1. 3241

    Empirical model prediction error analysis. حسب Hongqi Wang (2208238)

    منشور في 2024
    "…Comparative analysis highlights the significant enhancement in prediction accuracy achieved by the proposed ensemble model over single machine learning models, with root mean square error (RMSE) values below 0.05 and mean absolute percentage error (MAPE) values remaining under 2.5% in both frozen and unfrozen states. …"
  2. 3242

    Fitting curve parameters. حسب Hongqi Wang (2208238)

    منشور في 2024
    "…Comparative analysis highlights the significant enhancement in prediction accuracy achieved by the proposed ensemble model over single machine learning models, with root mean square error (RMSE) values below 0.05 and mean absolute percentage error (MAPE) values remaining under 2.5% in both frozen and unfrozen states. …"
  3. 3243

    Test instrument. حسب Hongqi Wang (2208238)

    منشور في 2024
    "…Comparative analysis highlights the significant enhancement in prediction accuracy achieved by the proposed ensemble model over single machine learning models, with root mean square error (RMSE) values below 0.05 and mean absolute percentage error (MAPE) values remaining under 2.5% in both frozen and unfrozen states. …"
  4. 3244

    Empirical model establishment process. حسب Hongqi Wang (2208238)

    منشور في 2024
    "…Comparative analysis highlights the significant enhancement in prediction accuracy achieved by the proposed ensemble model over single machine learning models, with root mean square error (RMSE) values below 0.05 and mean absolute percentage error (MAPE) values remaining under 2.5% in both frozen and unfrozen states. …"
  5. 3245

    Model prediction error trend chart. حسب Hongqi Wang (2208238)

    منشور في 2024
    "…Comparative analysis highlights the significant enhancement in prediction accuracy achieved by the proposed ensemble model over single machine learning models, with root mean square error (RMSE) values below 0.05 and mean absolute percentage error (MAPE) values remaining under 2.5% in both frozen and unfrozen states. …"
  6. 3246

    Basic physical parameters of red clay. حسب Hongqi Wang (2208238)

    منشور في 2024
    "…Comparative analysis highlights the significant enhancement in prediction accuracy achieved by the proposed ensemble model over single machine learning models, with root mean square error (RMSE) values below 0.05 and mean absolute percentage error (MAPE) values remaining under 2.5% in both frozen and unfrozen states. …"
  7. 3247

    BP neural network structure diagram. حسب Hongqi Wang (2208238)

    منشور في 2024
    "…Comparative analysis highlights the significant enhancement in prediction accuracy achieved by the proposed ensemble model over single machine learning models, with root mean square error (RMSE) values below 0.05 and mean absolute percentage error (MAPE) values remaining under 2.5% in both frozen and unfrozen states. …"
  8. 3248

    Structure diagram of GBDT model. حسب Hongqi Wang (2208238)

    منشور في 2024
    "…Comparative analysis highlights the significant enhancement in prediction accuracy achieved by the proposed ensemble model over single machine learning models, with root mean square error (RMSE) values below 0.05 and mean absolute percentage error (MAPE) values remaining under 2.5% in both frozen and unfrozen states. …"
  9. 3249

    Model prediction error analysis index. حسب Hongqi Wang (2208238)

    منشور في 2024
    "…Comparative analysis highlights the significant enhancement in prediction accuracy achieved by the proposed ensemble model over single machine learning models, with root mean square error (RMSE) values below 0.05 and mean absolute percentage error (MAPE) values remaining under 2.5% in both frozen and unfrozen states. …"
  10. 3250

    Fitting curve parameter table. حسب Hongqi Wang (2208238)

    منشور في 2024
    "…Comparative analysis highlights the significant enhancement in prediction accuracy achieved by the proposed ensemble model over single machine learning models, with root mean square error (RMSE) values below 0.05 and mean absolute percentage error (MAPE) values remaining under 2.5% in both frozen and unfrozen states. …"
  11. 3251

    Model prediction error analysis. حسب Hongqi Wang (2208238)

    منشور في 2024
    "…Comparative analysis highlights the significant enhancement in prediction accuracy achieved by the proposed ensemble model over single machine learning models, with root mean square error (RMSE) values below 0.05 and mean absolute percentage error (MAPE) values remaining under 2.5% in both frozen and unfrozen states. …"
  12. 3252
  13. 3253

    Basic information of the participants. حسب Jincheng Huang (9306806)

    منشور في 2024
    "…<div><p>Objective</p><p>To prospectively observe the self-correction of congenital auricular deformity (CAD) and explore the potential factors affecting the self-correction.…"
  14. 3254
  15. 3255

    Complexity comparison of different models. حسب Li Yuan (102305)

    منشور في 2025
    "…Therefore, the study proposes a signal automatic modulation classification model based on fixed K-mean algorithm and denoising autoencoder. The model uses fixed K-mean algorithm for feature classification and optimizes median filtering algorithm using dynamic thresholding. …"
  16. 3256

    Dynamic window based median filtering algorithm. حسب Li Yuan (102305)

    منشور في 2025
    "…Therefore, the study proposes a signal automatic modulation classification model based on fixed K-mean algorithm and denoising autoencoder. The model uses fixed K-mean algorithm for feature classification and optimizes median filtering algorithm using dynamic thresholding. …"
  17. 3257

    Flow of operation of improved KMA. حسب Li Yuan (102305)

    منشور في 2025
    "…Therefore, the study proposes a signal automatic modulation classification model based on fixed K-mean algorithm and denoising autoencoder. The model uses fixed K-mean algorithm for feature classification and optimizes median filtering algorithm using dynamic thresholding. …"
  18. 3258

    Improved DAE based on LSTM. حسب Li Yuan (102305)

    منشور في 2025
    "…Therefore, the study proposes a signal automatic modulation classification model based on fixed K-mean algorithm and denoising autoencoder. The model uses fixed K-mean algorithm for feature classification and optimizes median filtering algorithm using dynamic thresholding. …"
  19. 3259

    Autoencoder structure. حسب Li Yuan (102305)

    منشور في 2025
    "…Therefore, the study proposes a signal automatic modulation classification model based on fixed K-mean algorithm and denoising autoencoder. The model uses fixed K-mean algorithm for feature classification and optimizes median filtering algorithm using dynamic thresholding. …"
  20. 3260