بدائل البحث:
greater decrease » greatest decrease (توسيع البحث), greater increase (توسيع البحث), greater disease (توسيع البحث)
greater decrease » greatest decrease (توسيع البحث), greater increase (توسيع البحث), greater disease (توسيع البحث)
-
3241
Empirical model prediction error analysis.
منشور في 2024"…Comparative analysis highlights the significant enhancement in prediction accuracy achieved by the proposed ensemble model over single machine learning models, with root mean square error (RMSE) values below 0.05 and mean absolute percentage error (MAPE) values remaining under 2.5% in both frozen and unfrozen states. …"
-
3242
Fitting curve parameters.
منشور في 2024"…Comparative analysis highlights the significant enhancement in prediction accuracy achieved by the proposed ensemble model over single machine learning models, with root mean square error (RMSE) values below 0.05 and mean absolute percentage error (MAPE) values remaining under 2.5% in both frozen and unfrozen states. …"
-
3243
Test instrument.
منشور في 2024"…Comparative analysis highlights the significant enhancement in prediction accuracy achieved by the proposed ensemble model over single machine learning models, with root mean square error (RMSE) values below 0.05 and mean absolute percentage error (MAPE) values remaining under 2.5% in both frozen and unfrozen states. …"
-
3244
Empirical model establishment process.
منشور في 2024"…Comparative analysis highlights the significant enhancement in prediction accuracy achieved by the proposed ensemble model over single machine learning models, with root mean square error (RMSE) values below 0.05 and mean absolute percentage error (MAPE) values remaining under 2.5% in both frozen and unfrozen states. …"
-
3245
Model prediction error trend chart.
منشور في 2024"…Comparative analysis highlights the significant enhancement in prediction accuracy achieved by the proposed ensemble model over single machine learning models, with root mean square error (RMSE) values below 0.05 and mean absolute percentage error (MAPE) values remaining under 2.5% in both frozen and unfrozen states. …"
-
3246
Basic physical parameters of red clay.
منشور في 2024"…Comparative analysis highlights the significant enhancement in prediction accuracy achieved by the proposed ensemble model over single machine learning models, with root mean square error (RMSE) values below 0.05 and mean absolute percentage error (MAPE) values remaining under 2.5% in both frozen and unfrozen states. …"
-
3247
BP neural network structure diagram.
منشور في 2024"…Comparative analysis highlights the significant enhancement in prediction accuracy achieved by the proposed ensemble model over single machine learning models, with root mean square error (RMSE) values below 0.05 and mean absolute percentage error (MAPE) values remaining under 2.5% in both frozen and unfrozen states. …"
-
3248
Structure diagram of GBDT model.
منشور في 2024"…Comparative analysis highlights the significant enhancement in prediction accuracy achieved by the proposed ensemble model over single machine learning models, with root mean square error (RMSE) values below 0.05 and mean absolute percentage error (MAPE) values remaining under 2.5% in both frozen and unfrozen states. …"
-
3249
Model prediction error analysis index.
منشور في 2024"…Comparative analysis highlights the significant enhancement in prediction accuracy achieved by the proposed ensemble model over single machine learning models, with root mean square error (RMSE) values below 0.05 and mean absolute percentage error (MAPE) values remaining under 2.5% in both frozen and unfrozen states. …"
-
3250
Fitting curve parameter table.
منشور في 2024"…Comparative analysis highlights the significant enhancement in prediction accuracy achieved by the proposed ensemble model over single machine learning models, with root mean square error (RMSE) values below 0.05 and mean absolute percentage error (MAPE) values remaining under 2.5% in both frozen and unfrozen states. …"
-
3251
Model prediction error analysis.
منشور في 2024"…Comparative analysis highlights the significant enhancement in prediction accuracy achieved by the proposed ensemble model over single machine learning models, with root mean square error (RMSE) values below 0.05 and mean absolute percentage error (MAPE) values remaining under 2.5% in both frozen and unfrozen states. …"
-
3252
-
3253
Basic information of the participants.
منشور في 2024"…<div><p>Objective</p><p>To prospectively observe the self-correction of congenital auricular deformity (CAD) and explore the potential factors affecting the self-correction.…"
-
3254
-
3255
Complexity comparison of different models.
منشور في 2025"…Therefore, the study proposes a signal automatic modulation classification model based on fixed K-mean algorithm and denoising autoencoder. The model uses fixed K-mean algorithm for feature classification and optimizes median filtering algorithm using dynamic thresholding. …"
-
3256
Dynamic window based median filtering algorithm.
منشور في 2025"…Therefore, the study proposes a signal automatic modulation classification model based on fixed K-mean algorithm and denoising autoencoder. The model uses fixed K-mean algorithm for feature classification and optimizes median filtering algorithm using dynamic thresholding. …"
-
3257
Flow of operation of improved KMA.
منشور في 2025"…Therefore, the study proposes a signal automatic modulation classification model based on fixed K-mean algorithm and denoising autoencoder. The model uses fixed K-mean algorithm for feature classification and optimizes median filtering algorithm using dynamic thresholding. …"
-
3258
Improved DAE based on LSTM.
منشور في 2025"…Therefore, the study proposes a signal automatic modulation classification model based on fixed K-mean algorithm and denoising autoencoder. The model uses fixed K-mean algorithm for feature classification and optimizes median filtering algorithm using dynamic thresholding. …"
-
3259
Autoencoder structure.
منشور في 2025"…Therefore, the study proposes a signal automatic modulation classification model based on fixed K-mean algorithm and denoising autoencoder. The model uses fixed K-mean algorithm for feature classification and optimizes median filtering algorithm using dynamic thresholding. …"
-
3260