Search alternatives:
teer decrease » greater decrease (Expand Search)
we decrease » _ decrease (Expand Search), nn decrease (Expand Search), use decreased (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
teer decrease » greater decrease (Expand Search)
we decrease » _ decrease (Expand Search), nn decrease (Expand Search), use decreased (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
-
6741
Performance comparison of different models.
Published 2025“…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
-
6742
C2f and BC2f module structure diagrams.
Published 2025“…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
-
6743
YOLOv8n detection results diagram.
Published 2025“…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
-
6744
YOLOv8n-BWG model structure diagram.
Published 2025“…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
-
6745
BiFormer structure diagram.
Published 2025“…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
-
6746
YOLOv8n-BWG detection results diagram.
Published 2025“…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
-
6747
GSConv module structure diagram.
Published 2025“…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
-
6748
Performance comparison of three loss functions.
Published 2025“…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
-
6749
mAP0.5 Curves of various models.
Published 2025“…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
-
6750
Network loss function change diagram.
Published 2025“…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
-
6751
Comparative diagrams of different indicators.
Published 2025“…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
-
6752
YOLOv8n structure diagram.
Published 2025“…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
-
6753
Geometric model of the binocular system.
Published 2025“…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
-
6754
Enhanced dataset sample images.
Published 2025“…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
-
6755
GluA1 promotes opioid use
Published 2025“…In rats with steady MSA, the protein level of GluA1 subunits of glutamate AMPA receptors (AMPARs) was significantly increased, but that of GluA2 was decreased, resulting in an increased GluA1/GluA2 ratio in central nucleus of the amygdala (CeA). …”
-
6756
Test materials and test methods.
Published 2025“…As the BF content increases, the UCS and peak deviatoric stress exhibit an initial increase followed by a decrease. At the optimal BF dosage of 6‰, the UCS improved 24.48% ~ 25.40%, while the peak deviatoric stress improved 31.13% ~ 39.48%. …”
-
6757
Proportions of test specimens.
Published 2025“…As the BF content increases, the UCS and peak deviatoric stress exhibit an initial increase followed by a decrease. At the optimal BF dosage of 6‰, the UCS improved 24.48% ~ 25.40%, while the peak deviatoric stress improved 31.13% ~ 39.48%. …”
-
6758
Basic physical properties of red sandstone soil.
Published 2025“…As the BF content increases, the UCS and peak deviatoric stress exhibit an initial increase followed by a decrease. At the optimal BF dosage of 6‰, the UCS improved 24.48% ~ 25.40%, while the peak deviatoric stress improved 31.13% ~ 39.48%. …”
-
6759
Main performance indicators of BF.
Published 2025“…As the BF content increases, the UCS and peak deviatoric stress exhibit an initial increase followed by a decrease. At the optimal BF dosage of 6‰, the UCS improved 24.48% ~ 25.40%, while the peak deviatoric stress improved 31.13% ~ 39.48%. …”
-
6760
Technical parameters of cement.
Published 2025“…As the BF content increases, the UCS and peak deviatoric stress exhibit an initial increase followed by a decrease. At the optimal BF dosage of 6‰, the UCS improved 24.48% ~ 25.40%, while the peak deviatoric stress improved 31.13% ~ 39.48%. …”