Search alternatives:
tracking algorithm » tracking algorithms (Expand Search), training algorithms (Expand Search), making algorithm (Expand Search)
spatialized path » specialized pac (Expand Search)
tracking algorithm » tracking algorithms (Expand Search), training algorithms (Expand Search), making algorithm (Expand Search)
spatialized path » specialized pac (Expand Search)
-
1
Conceptual algorithm of bee direction vector estimation based on segmentation.
Published 2025Subjects: -
2
Conceptual algorithm of the bee behavior pattern recognition on the hive landing board.
Published 2025Subjects: -
3
-
4
-
5
-
6
-
7
-
8
-
9
Triangle-annotated bees using the <i>Labelme</i> tool for direction estimation (a–e).
Published 2025Subjects: -
10
-
11
-
12
-
13
-
14
-
15
Augmented Reality Surgery Navigation System Tailored for Chronic Back Pain Management
Published 2025“…Future work includes testing with real fluoroscopy, refining needle deflection algorithms, and expanding marker arrays for enhanced spatial accuracy.…”
-
16
-
17
Data Sheet 1_An autonomous navigation method for orchard mobile robots based on octree 3D point cloud optimization.docx
Published 2025“…At a resolution of 0.20 m, the maximum average lateral tracking error was 0.079 m, indicating strong path trackability. …”
-
18
Supplementary Data: Biodiversity and Energy System Planning - Queensland 2025
Published 2025“…</li></ul><h3>Analysis Scripts</h3><p dir="ltr">Complete set of R scripts for reproducing all analyses:</p><ul><li><b>percent cost increase_line plot.R</b>: Creates visualizations of energy cost impacts under different conservation scenarios</li><li><b>Zonation curves.R</b>: Generates conservation performance curves and coverage statistics</li><li><b>NPV_bar_plot.R</b>: Produces economic analysis plots with Net Present Value breakdowns</li><li><b>domestic_export_map_iterations.R</b>: Creates spatial maps of renewable energy infrastructure for domestic and export scenarios</li></ul><h2>Technical Specifications</h2><h3>Data Formats</h3><ul><li><b>Spatial Data</b>: ESRI Geodatabase (.gdb), Shapefile (.shp), GeoTIFF (.tif)</li><li><b>Tabular Data</b>: CSV, Microsoft Excel (.xlsx, .xls)</li><li><b>Analysis Code</b>: R scripts (.R)</li></ul><h3>Software Requirements</h3><ul><li><b>R</b> (≥4.0.0) with packages: sf, dplyr, ggplot2, readr, readxl, tidyr, furrr, ozmaps, ggpattern</li><li><b>ESRI ArcGIS</b> or <b>QGIS</b> for geodatabase access and spatial analysis</li><li><b>Zonation</b> conservation planning software (for methodology understanding)</li></ul><h3>Hardware Recommendations</h3><ul><li><b>RAM</b>: 16GB minimum (32GB recommended for full spatial analysis)</li><li><b>Storage</b>: 15GB free space for data extraction and processing</li><li><b>CPU</b>: Multi-core processor recommended for parallel processing scripts</li></ul><h2>Detailed Description of the VRE Siting and Cost-Minimization Model</h2><p><br></p><p dir="ltr">This section provides an in-depth description of the Variable Renewable Energy (VRE) siting model, including the software, the core algorithm, and the optimisation process used to determine the least-cost, spatially constrained development trajectory for VRE infrastructure in Queensland, Australia.…”