Comparison of performance of four machine learning models for early graft loss prediction.

<p>Comparison of performance of four machine learning models for early graft loss prediction.</p>

Gorde:
Xehetasun bibliografikoak
Egile nagusia: Raiki Yoshimura (22676573) (author)
Beste egile batzuk: Naotoshi Nakamura (12083048) (author), Takeru Matsuura (22676576) (author), Takeo Toshima (13988776) (author), Takasuke Fukuhara (673475) (author), Kazuyuki Aihara (44090) (author), Katsuhito Fujiu (559488) (author), Shingo Iwami (266092) (author), Tomoharu Yoshizumi (2621434) (author)
Argitaratua: 2025
Gaiak:
Etiketak: Etiketa erantsi
Etiketarik gabe, Izan zaitez lehena erregistro honi etiketa jartzen!
_version_ 1849927642270138368
author Raiki Yoshimura (22676573)
author2 Naotoshi Nakamura (12083048)
Takeru Matsuura (22676576)
Takeo Toshima (13988776)
Takasuke Fukuhara (673475)
Kazuyuki Aihara (44090)
Katsuhito Fujiu (559488)
Shingo Iwami (266092)
Tomoharu Yoshizumi (2621434)
author2_role author
author
author
author
author
author
author
author
author_facet Raiki Yoshimura (22676573)
Naotoshi Nakamura (12083048)
Takeru Matsuura (22676576)
Takeo Toshima (13988776)
Takasuke Fukuhara (673475)
Kazuyuki Aihara (44090)
Katsuhito Fujiu (559488)
Shingo Iwami (266092)
Tomoharu Yoshizumi (2621434)
author_role author
dc.creator.none.fl_str_mv Raiki Yoshimura (22676573)
Naotoshi Nakamura (12083048)
Takeru Matsuura (22676576)
Takeo Toshima (13988776)
Takasuke Fukuhara (673475)
Kazuyuki Aihara (44090)
Katsuhito Fujiu (559488)
Shingo Iwami (266092)
Tomoharu Yoshizumi (2621434)
dc.date.none.fl_str_mv 2025-11-24T18:30:46Z
dc.identifier.none.fl_str_mv 10.1371/journal.pcbi.1013734.t001
dc.relation.none.fl_str_mv https://figshare.com/articles/dataset/Comparison_of_performance_of_four_machine_learning_models_for_early_graft_loss_prediction_/30697307
dc.rights.none.fl_str_mv CC BY 4.0
info:eu-repo/semantics/openAccess
dc.subject.none.fl_str_mv Medicine
urgent need exists
stage liver disease
shorter waiting times
recent years thanks
populations using data
model enabled us
highly heterogeneous sample
appropriate patient care
30 days postoperatively
distinct population similar
different survival times
hierarchical prediction method
better graft quality
survival time
loss population
graft loss
better performance
unexpected infections
transplanted organ
three groups
several models
next categorized
mediated rejection
loss groups
loss group
living donors
gained importance
five groups
conventional models
dc.title.none.fl_str_mv Comparison of performance of four machine learning models for early graft loss prediction.
dc.type.none.fl_str_mv Dataset
info:eu-repo/semantics/publishedVersion
dataset
description <p>Comparison of performance of four machine learning models for early graft loss prediction.</p>
eu_rights_str_mv openAccess
id Manara_0c9baa0684bbb67baade947d7c5d75a1
identifier_str_mv 10.1371/journal.pcbi.1013734.t001
network_acronym_str Manara
network_name_str ManaraRepo
oai_identifier_str oai:figshare.com:article/30697307
publishDate 2025
repository.mail.fl_str_mv
repository.name.fl_str_mv
repository_id_str
rights_invalid_str_mv CC BY 4.0
spelling Comparison of performance of four machine learning models for early graft loss prediction.Raiki Yoshimura (22676573)Naotoshi Nakamura (12083048)Takeru Matsuura (22676576)Takeo Toshima (13988776)Takasuke Fukuhara (673475)Kazuyuki Aihara (44090)Katsuhito Fujiu (559488)Shingo Iwami (266092)Tomoharu Yoshizumi (2621434)Medicineurgent need existsstage liver diseaseshorter waiting timesrecent years thankspopulations using datamodel enabled ushighly heterogeneous sampleappropriate patient care30 days postoperativelydistinct population similardifferent survival timeshierarchical prediction methodbetter graft qualitysurvival timeloss populationgraft lossbetter performanceunexpected infectionstransplanted organthree groupsseveral modelsnext categorizedmediated rejectionloss groupsloss groupliving donorsgained importancefive groupsconventional models<p>Comparison of performance of four machine learning models for early graft loss prediction.</p>2025-11-24T18:30:46ZDatasetinfo:eu-repo/semantics/publishedVersiondataset10.1371/journal.pcbi.1013734.t001https://figshare.com/articles/dataset/Comparison_of_performance_of_four_machine_learning_models_for_early_graft_loss_prediction_/30697307CC BY 4.0info:eu-repo/semantics/openAccessoai:figshare.com:article/306973072025-11-24T18:30:46Z
spellingShingle Comparison of performance of four machine learning models for early graft loss prediction.
Raiki Yoshimura (22676573)
Medicine
urgent need exists
stage liver disease
shorter waiting times
recent years thanks
populations using data
model enabled us
highly heterogeneous sample
appropriate patient care
30 days postoperatively
distinct population similar
different survival times
hierarchical prediction method
better graft quality
survival time
loss population
graft loss
better performance
unexpected infections
transplanted organ
three groups
several models
next categorized
mediated rejection
loss groups
loss group
living donors
gained importance
five groups
conventional models
status_str publishedVersion
title Comparison of performance of four machine learning models for early graft loss prediction.
title_full Comparison of performance of four machine learning models for early graft loss prediction.
title_fullStr Comparison of performance of four machine learning models for early graft loss prediction.
title_full_unstemmed Comparison of performance of four machine learning models for early graft loss prediction.
title_short Comparison of performance of four machine learning models for early graft loss prediction.
title_sort Comparison of performance of four machine learning models for early graft loss prediction.
topic Medicine
urgent need exists
stage liver disease
shorter waiting times
recent years thanks
populations using data
model enabled us
highly heterogeneous sample
appropriate patient care
30 days postoperatively
distinct population similar
different survival times
hierarchical prediction method
better graft quality
survival time
loss population
graft loss
better performance
unexpected infections
transplanted organ
three groups
several models
next categorized
mediated rejection
loss groups
loss group
living donors
gained importance
five groups
conventional models