Skip to content
VuFind
  • 登錄
    • English
    • Deutsch
    • Español
    • Français
    • Italiano
    • 日本語
    • Nederlands
    • Português
    • Português (Brasil)
    • 中文(简体)
    • 中文(繁體)
    • Türkçe
    • עברית
    • Gaeilge
    • Cymraeg
    • Ελληνικά
    • Català
    • Euskara
    • Русский
    • Čeština
    • Suomi
    • Svenska
    • polski
    • Dansk
    • slovenščina
    • اللغة العربية
    • বাংলা
    • Galego
    • Tiếng Việt
    • Hrvatski
    • हिंदी
    • Հայերէն
    • Українська
    • Sámegiella
    • Монгол
高級檢索
  • Comparison of performance of f...
  • 引用
  • 發送短信
  • 推薦此
  • 打印
  • 導出紀錄
    • 導出到 RefWorks
    • 導出到 EndNoteWeb
    • 導出到 EndNote
  • 加到收藏夾
  • Permanent link
Comparison of performance of four machine learning models for early graft loss prediction.

Comparison of performance of four machine learning models for early graft loss prediction.

<p>Comparison of performance of four machine learning models for early graft loss prediction.</p>

Saved in:
書目詳細資料
主要作者: Raiki Yoshimura (22676573) (author)
其他作者: Naotoshi Nakamura (12083048) (author), Takeru Matsuura (22676576) (author), Takeo Toshima (13988776) (author), Takasuke Fukuhara (673475) (author), Kazuyuki Aihara (44090) (author), Katsuhito Fujiu (559488) (author), Shingo Iwami (266092) (author), Tomoharu Yoshizumi (2621434) (author)
出版: 2025
主題:
Medicine
urgent need exists
stage liver disease
shorter waiting times
recent years thanks
populations using data
model enabled us
highly heterogeneous sample
appropriate patient care
30 days postoperatively
distinct population similar
different survival times
hierarchical prediction method
better graft quality
survival time
loss population
graft loss
better performance
unexpected infections
transplanted organ
three groups
several models
next categorized
mediated rejection
loss groups
loss group
living donors
gained importance
five groups
conventional models
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
  • 持有資料
  • 實物特徵
  • 您的評論
  • 相似書籍
  • 職員瀏覽

相似書籍

  • Prediction of early graft loss at the individual level and identification of crucial factors: (A) Survival curves for all patients who experienced graft loss are plotted.
    由: Raiki Yoshimura (22676573)
    出版: (2025)
  • Comparison of performance of four machine learning models for long-term graft loss prediction.
    由: Raiki Yoshimura (22676573)
    出版: (2025)
  • Stratification and characterization of groups showing different graft survival: (A) UMAP visualization of the stratified derivation cohort data based on the distance matrix from the RF clustering.
    由: Raiki Yoshimura (22676573)
    出版: (2025)
  • Comparison of hierarchical classifier performance among four machine learning models for the early-loss, intermediate-loss, and late/no-loss groups.
    由: Raiki Yoshimura (22676573)
    出版: (2025)
  • Comparison of multi-class classifier performance among four machine learning models for early-loss, intermediate-loss, and late/no-loss groups.
    由: Raiki Yoshimura (22676573)
    出版: (2025)

檢索選項

  • 檢索歷史
  • 高級檢索

查找更多

  • 瀏覽目錄
  • 按字母順序瀏覽
  • Explore Channels
  • 課程儲備
  • 新項目

需要幫助?

  • 檢索技巧
  • 咨詢台
  • 常見問題
Cannot write session to /tmp/vufind_sessions/sess_he8o5uh39l4dcvcb4trfoumqem