ROC-AUC curve obtained by ML-IGPA (All classifiers).

<p>ROC-AUC curve obtained by ML-IGPA (All classifiers).</p>

محفوظ في:
التفاصيل البيبلوغرافية
المؤلف الرئيسي: Anwar Hossain Efat (19942283) (author)
مؤلفون آخرون: S. M. Mahedy Hasan (19942286) (author), Md. Palash Uddin (19139222) (author), Md. Al Mamun (12800084) (author)
منشور في: 2024
الموضوعات:
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
_version_ 1852025707248484352
author Anwar Hossain Efat (19942283)
author2 S. M. Mahedy Hasan (19942286)
Md. Palash Uddin (19139222)
Md. Al Mamun (12800084)
author2_role author
author
author
author_facet Anwar Hossain Efat (19942283)
S. M. Mahedy Hasan (19942286)
Md. Palash Uddin (19139222)
Md. Al Mamun (12800084)
author_role author
dc.creator.none.fl_str_mv Anwar Hossain Efat (19942283)
S. M. Mahedy Hasan (19942286)
Md. Palash Uddin (19139222)
Md. Al Mamun (12800084)
dc.date.none.fl_str_mv 2024-10-24T17:36:09Z
dc.identifier.none.fl_str_mv 10.1371/journal.pone.0309430.g013
dc.relation.none.fl_str_mv https://figshare.com/articles/figure/ROC-AUC_curve_obtained_by_ML-IGPA_All_classifiers_/27293936
dc.rights.none.fl_str_mv CC BY 4.0
info:eu-repo/semantics/openAccess
dc.subject.none.fl_str_mv Immunology
Cancer
Computational Biology
Biological Sciences not elsewhere classified
Mathematical Sciences not elsewhere classified
Information Systems not elsewhere classified
ham1000 dataset demonstrates
dominance dispersion remains
convolutional neural network
approach achieves 94
achieving desired outcomes
abnormal cell growth
level ensemble approach
identify responsible regions
facilitating early diagnosis
including skin diseases
customized transfer learning
approach &# 8220
igpa ),&# 8221
determining optimal weights
model &# 8217
&# 8220
ensemble learning
specific regions
early detection
skin cancer
skin abnormalities
machine learning
deep learning
triple attention
surpassing state
specifically involves
primary objective
novel method
multiple levels
integral component
exact focus
enhance explainability
empirical evaluation
el ).
currently lacking
current studies
art methods
affect structure
dc.title.none.fl_str_mv ROC-AUC curve obtained by ML-IGPA (All classifiers).
dc.type.none.fl_str_mv Image
Figure
info:eu-repo/semantics/publishedVersion
image
description <p>ROC-AUC curve obtained by ML-IGPA (All classifiers).</p>
eu_rights_str_mv openAccess
id Manara_1de4ed94de2a0be0fca31f54d683ccbb
identifier_str_mv 10.1371/journal.pone.0309430.g013
network_acronym_str Manara
network_name_str ManaraRepo
oai_identifier_str oai:figshare.com:article/27293936
publishDate 2024
repository.mail.fl_str_mv
repository.name.fl_str_mv
repository_id_str
rights_invalid_str_mv CC BY 4.0
spelling ROC-AUC curve obtained by ML-IGPA (All classifiers).Anwar Hossain Efat (19942283)S. M. Mahedy Hasan (19942286)Md. Palash Uddin (19139222)Md. Al Mamun (12800084)ImmunologyCancerComputational BiologyBiological Sciences not elsewhere classifiedMathematical Sciences not elsewhere classifiedInformation Systems not elsewhere classifiedham1000 dataset demonstratesdominance dispersion remainsconvolutional neural networkapproach achieves 94achieving desired outcomesabnormal cell growthlevel ensemble approachidentify responsible regionsfacilitating early diagnosisincluding skin diseasescustomized transfer learningapproach &# 8220igpa ),&# 8221determining optimal weightsmodel &# 8217&# 8220ensemble learningspecific regionsearly detectionskin cancerskin abnormalitiesmachine learningdeep learningtriple attentionsurpassing statespecifically involvesprimary objectivenovel methodmultiple levelsintegral componentexact focusenhance explainabilityempirical evaluationel ).currently lackingcurrent studiesart methodsaffect structure<p>ROC-AUC curve obtained by ML-IGPA (All classifiers).</p>2024-10-24T17:36:09ZImageFigureinfo:eu-repo/semantics/publishedVersionimage10.1371/journal.pone.0309430.g013https://figshare.com/articles/figure/ROC-AUC_curve_obtained_by_ML-IGPA_All_classifiers_/27293936CC BY 4.0info:eu-repo/semantics/openAccessoai:figshare.com:article/272939362024-10-24T17:36:09Z
spellingShingle ROC-AUC curve obtained by ML-IGPA (All classifiers).
Anwar Hossain Efat (19942283)
Immunology
Cancer
Computational Biology
Biological Sciences not elsewhere classified
Mathematical Sciences not elsewhere classified
Information Systems not elsewhere classified
ham1000 dataset demonstrates
dominance dispersion remains
convolutional neural network
approach achieves 94
achieving desired outcomes
abnormal cell growth
level ensemble approach
identify responsible regions
facilitating early diagnosis
including skin diseases
customized transfer learning
approach &# 8220
igpa ),&# 8221
determining optimal weights
model &# 8217
&# 8220
ensemble learning
specific regions
early detection
skin cancer
skin abnormalities
machine learning
deep learning
triple attention
surpassing state
specifically involves
primary objective
novel method
multiple levels
integral component
exact focus
enhance explainability
empirical evaluation
el ).
currently lacking
current studies
art methods
affect structure
status_str publishedVersion
title ROC-AUC curve obtained by ML-IGPA (All classifiers).
title_full ROC-AUC curve obtained by ML-IGPA (All classifiers).
title_fullStr ROC-AUC curve obtained by ML-IGPA (All classifiers).
title_full_unstemmed ROC-AUC curve obtained by ML-IGPA (All classifiers).
title_short ROC-AUC curve obtained by ML-IGPA (All classifiers).
title_sort ROC-AUC curve obtained by ML-IGPA (All classifiers).
topic Immunology
Cancer
Computational Biology
Biological Sciences not elsewhere classified
Mathematical Sciences not elsewhere classified
Information Systems not elsewhere classified
ham1000 dataset demonstrates
dominance dispersion remains
convolutional neural network
approach achieves 94
achieving desired outcomes
abnormal cell growth
level ensemble approach
identify responsible regions
facilitating early diagnosis
including skin diseases
customized transfer learning
approach &# 8220
igpa ),&# 8221
determining optimal weights
model &# 8217
&# 8220
ensemble learning
specific regions
early detection
skin cancer
skin abnormalities
machine learning
deep learning
triple attention
surpassing state
specifically involves
primary objective
novel method
multiple levels
integral component
exact focus
enhance explainability
empirical evaluation
el ).
currently lacking
current studies
art methods
affect structure