ROC-AUC curve obtained by ML-IGPA (All classifiers).
<p>ROC-AUC curve obtained by ML-IGPA (All classifiers).</p>
محفوظ في:
| المؤلف الرئيسي: | |
|---|---|
| مؤلفون آخرون: | , , |
| منشور في: |
2024
|
| الموضوعات: | |
| الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
| _version_ | 1852025707248484352 |
|---|---|
| author | Anwar Hossain Efat (19942283) |
| author2 | S. M. Mahedy Hasan (19942286) Md. Palash Uddin (19139222) Md. Al Mamun (12800084) |
| author2_role | author author author |
| author_facet | Anwar Hossain Efat (19942283) S. M. Mahedy Hasan (19942286) Md. Palash Uddin (19139222) Md. Al Mamun (12800084) |
| author_role | author |
| dc.creator.none.fl_str_mv | Anwar Hossain Efat (19942283) S. M. Mahedy Hasan (19942286) Md. Palash Uddin (19139222) Md. Al Mamun (12800084) |
| dc.date.none.fl_str_mv | 2024-10-24T17:36:09Z |
| dc.identifier.none.fl_str_mv | 10.1371/journal.pone.0309430.g013 |
| dc.relation.none.fl_str_mv | https://figshare.com/articles/figure/ROC-AUC_curve_obtained_by_ML-IGPA_All_classifiers_/27293936 |
| dc.rights.none.fl_str_mv | CC BY 4.0 info:eu-repo/semantics/openAccess |
| dc.subject.none.fl_str_mv | Immunology Cancer Computational Biology Biological Sciences not elsewhere classified Mathematical Sciences not elsewhere classified Information Systems not elsewhere classified ham1000 dataset demonstrates dominance dispersion remains convolutional neural network approach achieves 94 achieving desired outcomes abnormal cell growth level ensemble approach identify responsible regions facilitating early diagnosis including skin diseases customized transfer learning approach &# 8220 igpa ),&# 8221 determining optimal weights model &# 8217 &# 8220 ensemble learning specific regions early detection skin cancer skin abnormalities machine learning deep learning triple attention surpassing state specifically involves primary objective novel method multiple levels integral component exact focus enhance explainability empirical evaluation el ). currently lacking current studies art methods affect structure |
| dc.title.none.fl_str_mv | ROC-AUC curve obtained by ML-IGPA (All classifiers). |
| dc.type.none.fl_str_mv | Image Figure info:eu-repo/semantics/publishedVersion image |
| description | <p>ROC-AUC curve obtained by ML-IGPA (All classifiers).</p> |
| eu_rights_str_mv | openAccess |
| id | Manara_1de4ed94de2a0be0fca31f54d683ccbb |
| identifier_str_mv | 10.1371/journal.pone.0309430.g013 |
| network_acronym_str | Manara |
| network_name_str | ManaraRepo |
| oai_identifier_str | oai:figshare.com:article/27293936 |
| publishDate | 2024 |
| repository.mail.fl_str_mv | |
| repository.name.fl_str_mv | |
| repository_id_str | |
| rights_invalid_str_mv | CC BY 4.0 |
| spelling | ROC-AUC curve obtained by ML-IGPA (All classifiers).Anwar Hossain Efat (19942283)S. M. Mahedy Hasan (19942286)Md. Palash Uddin (19139222)Md. Al Mamun (12800084)ImmunologyCancerComputational BiologyBiological Sciences not elsewhere classifiedMathematical Sciences not elsewhere classifiedInformation Systems not elsewhere classifiedham1000 dataset demonstratesdominance dispersion remainsconvolutional neural networkapproach achieves 94achieving desired outcomesabnormal cell growthlevel ensemble approachidentify responsible regionsfacilitating early diagnosisincluding skin diseasescustomized transfer learningapproach &# 8220igpa ),&# 8221determining optimal weightsmodel &# 8217&# 8220ensemble learningspecific regionsearly detectionskin cancerskin abnormalitiesmachine learningdeep learningtriple attentionsurpassing statespecifically involvesprimary objectivenovel methodmultiple levelsintegral componentexact focusenhance explainabilityempirical evaluationel ).currently lackingcurrent studiesart methodsaffect structure<p>ROC-AUC curve obtained by ML-IGPA (All classifiers).</p>2024-10-24T17:36:09ZImageFigureinfo:eu-repo/semantics/publishedVersionimage10.1371/journal.pone.0309430.g013https://figshare.com/articles/figure/ROC-AUC_curve_obtained_by_ML-IGPA_All_classifiers_/27293936CC BY 4.0info:eu-repo/semantics/openAccessoai:figshare.com:article/272939362024-10-24T17:36:09Z |
| spellingShingle | ROC-AUC curve obtained by ML-IGPA (All classifiers). Anwar Hossain Efat (19942283) Immunology Cancer Computational Biology Biological Sciences not elsewhere classified Mathematical Sciences not elsewhere classified Information Systems not elsewhere classified ham1000 dataset demonstrates dominance dispersion remains convolutional neural network approach achieves 94 achieving desired outcomes abnormal cell growth level ensemble approach identify responsible regions facilitating early diagnosis including skin diseases customized transfer learning approach &# 8220 igpa ),&# 8221 determining optimal weights model &# 8217 &# 8220 ensemble learning specific regions early detection skin cancer skin abnormalities machine learning deep learning triple attention surpassing state specifically involves primary objective novel method multiple levels integral component exact focus enhance explainability empirical evaluation el ). currently lacking current studies art methods affect structure |
| status_str | publishedVersion |
| title | ROC-AUC curve obtained by ML-IGPA (All classifiers). |
| title_full | ROC-AUC curve obtained by ML-IGPA (All classifiers). |
| title_fullStr | ROC-AUC curve obtained by ML-IGPA (All classifiers). |
| title_full_unstemmed | ROC-AUC curve obtained by ML-IGPA (All classifiers). |
| title_short | ROC-AUC curve obtained by ML-IGPA (All classifiers). |
| title_sort | ROC-AUC curve obtained by ML-IGPA (All classifiers). |
| topic | Immunology Cancer Computational Biology Biological Sciences not elsewhere classified Mathematical Sciences not elsewhere classified Information Systems not elsewhere classified ham1000 dataset demonstrates dominance dispersion remains convolutional neural network approach achieves 94 achieving desired outcomes abnormal cell growth level ensemble approach identify responsible regions facilitating early diagnosis including skin diseases customized transfer learning approach &# 8220 igpa ),&# 8221 determining optimal weights model &# 8217 &# 8220 ensemble learning specific regions early detection skin cancer skin abnormalities machine learning deep learning triple attention surpassing state specifically involves primary objective novel method multiple levels integral component exact focus enhance explainability empirical evaluation el ). currently lacking current studies art methods affect structure |