Electronic Structure and Redox of the Antidepressants Venlafaxine and Desvenlafaxine

Venlafaxine and its primary metabolite desvenlafaxine are antidepressants that block presynaptic reuptake of serotonin and norepinephrine in the brain. Electroanalytical and computational analyses were performed to evaluate the electrochemical characterization of these drugs through measurements usi...

সম্পূর্ণ বিবরণ

সংরক্ষণ করুন:
গ্রন্থ-পঞ্জীর বিবরন
প্রধান লেখক: Jhon Kennedy Alves Pereira (22681627) (author)
অন্যান্য লেখক: Eufrásia de Sousa Pereira (22681630) (author), Bárbara Júlia Gonçalves Dutra (22681633) (author), Isaac Yves Lopes de Macêdo (22681636) (author), Arthur Saldanha Guimarães (22681639) (author), Bruno Junior Neves (5960789) (author), Eric de Souza Gil (6303956) (author), Freddy Fernandes Guimarães (6293438) (author)
প্রকাশিত: 2025
বিষয়গুলি:
ট্যাগগুলো: ট্যাগ যুক্ত করুন
কোনো ট্যাগ নেই, প্রথমজন হিসাবে ট্যাগ করুন!
_version_ 1849927634620776448
author Jhon Kennedy Alves Pereira (22681627)
author2 Eufrásia de Sousa Pereira (22681630)
Bárbara Júlia Gonçalves Dutra (22681633)
Isaac Yves Lopes de Macêdo (22681636)
Arthur Saldanha Guimarães (22681639)
Bruno Junior Neves (5960789)
Eric de Souza Gil (6303956)
Freddy Fernandes Guimarães (6293438)
author2_role author
author
author
author
author
author
author
author_facet Jhon Kennedy Alves Pereira (22681627)
Eufrásia de Sousa Pereira (22681630)
Bárbara Júlia Gonçalves Dutra (22681633)
Isaac Yves Lopes de Macêdo (22681636)
Arthur Saldanha Guimarães (22681639)
Bruno Junior Neves (5960789)
Eric de Souza Gil (6303956)
Freddy Fernandes Guimarães (6293438)
author_role author
dc.creator.none.fl_str_mv Jhon Kennedy Alves Pereira (22681627)
Eufrásia de Sousa Pereira (22681630)
Bárbara Júlia Gonçalves Dutra (22681633)
Isaac Yves Lopes de Macêdo (22681636)
Arthur Saldanha Guimarães (22681639)
Bruno Junior Neves (5960789)
Eric de Souza Gil (6303956)
Freddy Fernandes Guimarães (6293438)
dc.date.none.fl_str_mv 2025-11-25T12:25:24Z
dc.identifier.none.fl_str_mv 10.1021/acsomega.5c08632.s002
dc.relation.none.fl_str_mv https://figshare.com/articles/dataset/Electronic_Structure_and_Redox_of_the_Antidepressants_Venlafaxine_and_Desvenlafaxine/30705595
dc.rights.none.fl_str_mv CC BY-NC 4.0
info:eu-repo/semantics/openAccess
dc.subject.none.fl_str_mv Biophysics
Biochemistry
Pharmacology
Space Science
Chemical Sciences not elsewhere classified
molecular charge distribution
effective therapeutic agents
block presynaptic reuptake
primary metabolite desvenlafaxine
td – dft
dft calculations provided
dependent electrochemical behaviors
desvenlafaxine venlafaxine
thermodynamic stability
results showed
protonated states
orbital profiles
measurements using
may pave
findings presented
electronic structure
electronic properties
electrochemical data
electrochemical characterization
critical role
computational insights
computational analyses
alkaline ph
dc.title.none.fl_str_mv Electronic Structure and Redox of the Antidepressants Venlafaxine and Desvenlafaxine
dc.type.none.fl_str_mv Dataset
info:eu-repo/semantics/publishedVersion
dataset
description Venlafaxine and its primary metabolite desvenlafaxine are antidepressants that block presynaptic reuptake of serotonin and norepinephrine in the brain. Electroanalytical and computational analyses were performed to evaluate the electrochemical characterization of these drugs through measurements using a carbon paste electrode alongside quantum calculations (DFT and TD–DFT) to support the electrochemical data and propose potential oxidation pathways. The results showed that both venlafaxine and desvenlafaxine exhibit different pH-dependent electrochemical behaviors, with desvenlafaxine showing higher anodic peak intensities at neutral pH, while venlafaxine peaks at alkaline pH. Computational insights from DFT calculations provided a deeper understanding of the molecular charge distribution, orbital profiles, and energetics of both drugs in neutral and protonated states. The Gibbs free energy variations in different medium environments revealed the critical role of the medium in modulating the thermodynamic stability. These findings presented here improve our understanding of the electrochemical and electronic properties of these antidepressants and may pave the way for the development of more effective therapeutic agents.
eu_rights_str_mv openAccess
id Manara_3ad844b7b524e14aecbd54fec9f363c3
identifier_str_mv 10.1021/acsomega.5c08632.s002
network_acronym_str Manara
network_name_str ManaraRepo
oai_identifier_str oai:figshare.com:article/30705595
publishDate 2025
repository.mail.fl_str_mv
repository.name.fl_str_mv
repository_id_str
rights_invalid_str_mv CC BY-NC 4.0
spelling Electronic Structure and Redox of the Antidepressants Venlafaxine and DesvenlafaxineJhon Kennedy Alves Pereira (22681627)Eufrásia de Sousa Pereira (22681630)Bárbara Júlia Gonçalves Dutra (22681633)Isaac Yves Lopes de Macêdo (22681636)Arthur Saldanha Guimarães (22681639)Bruno Junior Neves (5960789)Eric de Souza Gil (6303956)Freddy Fernandes Guimarães (6293438)BiophysicsBiochemistryPharmacologySpace ScienceChemical Sciences not elsewhere classifiedmolecular charge distributioneffective therapeutic agentsblock presynaptic reuptakeprimary metabolite desvenlafaxinetd – dftdft calculations provideddependent electrochemical behaviorsdesvenlafaxine venlafaxinethermodynamic stabilityresults showedprotonated statesorbital profilesmeasurements usingmay pavefindings presentedelectronic structureelectronic propertieselectrochemical dataelectrochemical characterizationcritical rolecomputational insightscomputational analysesalkaline phVenlafaxine and its primary metabolite desvenlafaxine are antidepressants that block presynaptic reuptake of serotonin and norepinephrine in the brain. Electroanalytical and computational analyses were performed to evaluate the electrochemical characterization of these drugs through measurements using a carbon paste electrode alongside quantum calculations (DFT and TD–DFT) to support the electrochemical data and propose potential oxidation pathways. The results showed that both venlafaxine and desvenlafaxine exhibit different pH-dependent electrochemical behaviors, with desvenlafaxine showing higher anodic peak intensities at neutral pH, while venlafaxine peaks at alkaline pH. Computational insights from DFT calculations provided a deeper understanding of the molecular charge distribution, orbital profiles, and energetics of both drugs in neutral and protonated states. The Gibbs free energy variations in different medium environments revealed the critical role of the medium in modulating the thermodynamic stability. These findings presented here improve our understanding of the electrochemical and electronic properties of these antidepressants and may pave the way for the development of more effective therapeutic agents.2025-11-25T12:25:24ZDatasetinfo:eu-repo/semantics/publishedVersiondataset10.1021/acsomega.5c08632.s002https://figshare.com/articles/dataset/Electronic_Structure_and_Redox_of_the_Antidepressants_Venlafaxine_and_Desvenlafaxine/30705595CC BY-NC 4.0info:eu-repo/semantics/openAccessoai:figshare.com:article/307055952025-11-25T12:25:24Z
spellingShingle Electronic Structure and Redox of the Antidepressants Venlafaxine and Desvenlafaxine
Jhon Kennedy Alves Pereira (22681627)
Biophysics
Biochemistry
Pharmacology
Space Science
Chemical Sciences not elsewhere classified
molecular charge distribution
effective therapeutic agents
block presynaptic reuptake
primary metabolite desvenlafaxine
td – dft
dft calculations provided
dependent electrochemical behaviors
desvenlafaxine venlafaxine
thermodynamic stability
results showed
protonated states
orbital profiles
measurements using
may pave
findings presented
electronic structure
electronic properties
electrochemical data
electrochemical characterization
critical role
computational insights
computational analyses
alkaline ph
status_str publishedVersion
title Electronic Structure and Redox of the Antidepressants Venlafaxine and Desvenlafaxine
title_full Electronic Structure and Redox of the Antidepressants Venlafaxine and Desvenlafaxine
title_fullStr Electronic Structure and Redox of the Antidepressants Venlafaxine and Desvenlafaxine
title_full_unstemmed Electronic Structure and Redox of the Antidepressants Venlafaxine and Desvenlafaxine
title_short Electronic Structure and Redox of the Antidepressants Venlafaxine and Desvenlafaxine
title_sort Electronic Structure and Redox of the Antidepressants Venlafaxine and Desvenlafaxine
topic Biophysics
Biochemistry
Pharmacology
Space Science
Chemical Sciences not elsewhere classified
molecular charge distribution
effective therapeutic agents
block presynaptic reuptake
primary metabolite desvenlafaxine
td – dft
dft calculations provided
dependent electrochemical behaviors
desvenlafaxine venlafaxine
thermodynamic stability
results showed
protonated states
orbital profiles
measurements using
may pave
findings presented
electronic structure
electronic properties
electrochemical data
electrochemical characterization
critical role
computational insights
computational analyses
alkaline ph