Sirdás sisdollui
VuFind
  • Čálihuva
    • English
    • Deutsch
    • Español
    • Français
    • Italiano
    • 日本語
    • Nederlands
    • Português
    • Português (Brasil)
    • 中文(简体)
    • 中文(繁體)
    • Türkçe
    • עברית
    • Gaeilge
    • Cymraeg
    • Ελληνικά
    • Català
    • Euskara
    • Русский
    • Čeština
    • Suomi
    • Svenska
    • polski
    • Dansk
    • slovenščina
    • اللغة العربية
    • বাংলা
    • Galego
    • Tiếng Việt
    • Hrvatski
    • हिंदी
    • Հայերէն
    • Українська
    • Sámegiella
    • Монгол
Aiddostahtton
  • Results of training and predic...
  • Čujuhandieđut
  • Deakstadieđáhus
  • Sádde šleađgaboasttain
  • Čálit
  • Doalvvo čujuhusa
    • Doalvun: RefWorks
    • Doalvun: EndNoteWeb
    • Doalvun: EndNote
  • Lasit oiddohiidda
  • Bissovaš liŋka
Results of training and prediction of death population for SSA-XGBoost model.

Results of training and prediction of death population for SSA-XGBoost model.

<p>Results of training and prediction of death population for SSA-XGBoost model.</p>

Furkejuvvon:
Bibliográfalaš dieđut
Váldodahkki: Jin Wang (29560) (author)
Eará dahkkit: Shihan Ma (9362796) (author), Qing Lv (63057) (author), Qiang Li (8118) (author)
Almmustuhtton: 2025
Fáttát:
Ecology
Science Policy
Biological Sciences not elsewhere classified
Information Systems not elsewhere classified
sparrow search algorithm
population forecasts due
population dynamic monitoring
mobile phone signals
high population density
different metaheuristic algorithms
research focuses primarily
mean squared error
reliable predictive model
div >< p
2 </ sup
improve forecast accuracy
better prediction performance
xgboost model demonstrates
proposed predictive model
demographic data forecast
effectively forecast
research compared
higher error
demographic data
better r
combination model
base model
verified based
various gradient
validation show
time characteristics
reasonable parameters
predicted data
national regions
machine learning
learning models
hebei province
following year
economic planning
comparative experiments
boosting machine
Fáddágilkorat: Lasit fáddágilkoriid
Eai fáddágilkorat, Lasit vuosttaš fáddágilkora!
  • Oažžasuvvandieđut
  • Govvádus
  • Kommeanttat
  • Geahča maid
  • Bargiidšearbma

Geahča maid

  • Flowchart of SSA-XGBoost model.
    Dahkki: Jin Wang (29560)
    Almmustuhtton: (2025)
  • Results of training and prediction of migration data for SSA-XGBoost model.
    Dahkki: Jin Wang (29560)
    Almmustuhtton: (2025)
  • SSA fitness curve.
    Dahkki: Jin Wang (29560)
    Almmustuhtton: (2025)
  • Results of training and prediction of death population for traditional XGBoost model.
    Dahkki: Jin Wang (29560)
    Almmustuhtton: (2025)
  • Visualized XGBoost simulations for all four metaheuristics regarding the convergence.
    Dahkki: Jin Wang (29560)
    Almmustuhtton: (2025)

Ozu molssaeavttut

  • Ohcanhistorjá
  • Aiddostahtton ohcu

Viečča lasi

  • Bláđe logahallama
  • Bláđe alfabehtalaš ortnegis
  • Dutkka kanálaid
  • Gursagirjjit
  • Ođatlogahallan

Dárbbašatgo veahki?

  • Ohcanráva
  • Jeara girjerájus
  • DJG:t