3D-GloBFP: the first global three-dimensional building footprint dataset (PART Ⅳ, grid ID: 900-1299)

<p dir="ltr">The 3D Global Building Footprints (3D-GloBFP) dataset is the first global-scale building height dataset at the individual building footprint level for the year 2020, generated through the integration of multisource Earth Observation (EO) data and the extreme gradient boo...

Descrizione completa

Salvato in:
Dettagli Bibliografici
Autore principale: Yangzi Che (13843288) (author)
Altri autori: Xuecao Li (11480095) (author), Xiaoping Liu (14858981) (author), Yuhao Wang (19489429) (author), Weilin Liao (19640749) (author), Xianwei Zheng (21189954) (author), Xucai Zhang (21190903) (author), Xiaocong Xu (12533960) (author), Qian Shi (14006525) (author), Jiajun Zhu (21189962) (author), Honghui Zhang (21189963) (author), Hua Yuan (14372999) (author), Yongjiu Dai (12994103) (author)
Pubblicazione: 2025
Soggetti:
Tags: Aggiungi Tag
Nessun Tag, puoi essere il primo ad aggiungerne!!
Descrizione
Riassunto:<p dir="ltr">The 3D Global Building Footprints (3D-GloBFP) dataset is the first global-scale building height dataset at the individual building footprint level for the year 2020, generated through the integration of multisource Earth Observation (EO) data and the extreme gradient boosting (XGBoost) model. The reliability and accuracy of 3D-GloBFP have been validated across 33 subregions, achieving R² values ranging from 0.66 to 0.96 and root-mean-square errors (RMSEs) between 1.9 m and 14.6 m. The dataset is divided into spatial grid-based tiles, each stored as an individual ShapeFile (.shp) containing estimated building heights (in meters) in attribute tables. See world_grid.shp and readme.txt at <a href="https://doi.org/10.5281/zenodo.11319912" target="_blank">https://doi.org/10.5281/zenodo.11319912</a> for grid partitioning and naming details.</p>