The most effective active substances for subfertility treatment.

<p>The most effective active substances for subfertility treatment.</p>

שמור ב:
מידע ביבליוגרפי
מחבר ראשי: Uğur Ejder (22683228) (author)
מחברים אחרים: Pınar Uskaner Hepsağ (22683231) (author)
יצא לאור: 2025
נושאים:
תגים: הוספת תג
אין תגיות, היה/י הראשונ/ה לתייג את הרשומה!
_version_ 1849927629679886336
author Uğur Ejder (22683228)
author2 Pınar Uskaner Hepsağ (22683231)
author2_role author
author_facet Uğur Ejder (22683228)
Pınar Uskaner Hepsağ (22683231)
author_role author
dc.creator.none.fl_str_mv Uğur Ejder (22683228)
Pınar Uskaner Hepsağ (22683231)
dc.date.none.fl_str_mv 2025-11-25T18:24:02Z
dc.identifier.none.fl_str_mv 10.1371/journal.pone.0336846.g007
dc.relation.none.fl_str_mv https://figshare.com/articles/figure/The_most_effective_active_substances_for_subfertility_treatment_/30713271
dc.rights.none.fl_str_mv CC BY 4.0
info:eu-repo/semantics/openAccess
dc.subject.none.fl_str_mv Biotechnology
Ecology
Cancer
Biological Sciences not elsewhere classified
Mathematical Sciences not elsewhere classified
Information Systems not elsewhere classified
small sample size
lr &# 8211
evaluated using 5
assisted reproductive technologies
artificial bee colony
art ), yet
address class imbalance
support vector machine
pharmaceutical supplement use
enhance predictive performance
abc hybrids outperformed
abc hybrid counterparts
local interpretable model
abc hybrid model
model performance
supplement variables
producing interpretable
dietician support
vitro fertilization
synthetic minority
studies rely
sampling technique
retrospective dataset
regression tree
random forest
observed improvements
nearest neighbors
limited optimization
influential features
individual predictions
improving prediction
implemented alongside
future studies
four algorithms
folic acid
fold cross
exploratory rather
dietary data
conventional algorithms
concept study
clinically directive
binary representation
baseline models
algorithm models
agnostic explanations
accuracy ).
21 predictors
dc.title.none.fl_str_mv The most effective active substances for subfertility treatment.
dc.type.none.fl_str_mv Image
Figure
info:eu-repo/semantics/publishedVersion
image
description <p>The most effective active substances for subfertility treatment.</p>
eu_rights_str_mv openAccess
id Manara_98e707d76d6609261cdaa6427ee4f799
identifier_str_mv 10.1371/journal.pone.0336846.g007
network_acronym_str Manara
network_name_str ManaraRepo
oai_identifier_str oai:figshare.com:article/30713271
publishDate 2025
repository.mail.fl_str_mv
repository.name.fl_str_mv
repository_id_str
rights_invalid_str_mv CC BY 4.0
spelling The most effective active substances for subfertility treatment.Uğur Ejder (22683228)Pınar Uskaner Hepsağ (22683231)BiotechnologyEcologyCancerBiological Sciences not elsewhere classifiedMathematical Sciences not elsewhere classifiedInformation Systems not elsewhere classifiedsmall sample sizelr &# 8211evaluated using 5assisted reproductive technologiesartificial bee colonyart ), yetaddress class imbalancesupport vector machinepharmaceutical supplement useenhance predictive performanceabc hybrids outperformedabc hybrid counterpartslocal interpretable modelabc hybrid modelmodel performancesupplement variablesproducing interpretabledietician supportvitro fertilizationsynthetic minoritystudies relysampling techniqueretrospective datasetregression treerandom forestobserved improvementsnearest neighborslimited optimizationinfluential featuresindividual predictionsimproving predictionimplemented alongsidefuture studiesfour algorithmsfolic acidfold crossexploratory ratherdietary dataconventional algorithmsconcept studyclinically directivebinary representationbaseline modelsalgorithm modelsagnostic explanationsaccuracy ).21 predictors<p>The most effective active substances for subfertility treatment.</p>2025-11-25T18:24:02ZImageFigureinfo:eu-repo/semantics/publishedVersionimage10.1371/journal.pone.0336846.g007https://figshare.com/articles/figure/The_most_effective_active_substances_for_subfertility_treatment_/30713271CC BY 4.0info:eu-repo/semantics/openAccessoai:figshare.com:article/307132712025-11-25T18:24:02Z
spellingShingle The most effective active substances for subfertility treatment.
Uğur Ejder (22683228)
Biotechnology
Ecology
Cancer
Biological Sciences not elsewhere classified
Mathematical Sciences not elsewhere classified
Information Systems not elsewhere classified
small sample size
lr &# 8211
evaluated using 5
assisted reproductive technologies
artificial bee colony
art ), yet
address class imbalance
support vector machine
pharmaceutical supplement use
enhance predictive performance
abc hybrids outperformed
abc hybrid counterparts
local interpretable model
abc hybrid model
model performance
supplement variables
producing interpretable
dietician support
vitro fertilization
synthetic minority
studies rely
sampling technique
retrospective dataset
regression tree
random forest
observed improvements
nearest neighbors
limited optimization
influential features
individual predictions
improving prediction
implemented alongside
future studies
four algorithms
folic acid
fold cross
exploratory rather
dietary data
conventional algorithms
concept study
clinically directive
binary representation
baseline models
algorithm models
agnostic explanations
accuracy ).
21 predictors
status_str publishedVersion
title The most effective active substances for subfertility treatment.
title_full The most effective active substances for subfertility treatment.
title_fullStr The most effective active substances for subfertility treatment.
title_full_unstemmed The most effective active substances for subfertility treatment.
title_short The most effective active substances for subfertility treatment.
title_sort The most effective active substances for subfertility treatment.
topic Biotechnology
Ecology
Cancer
Biological Sciences not elsewhere classified
Mathematical Sciences not elsewhere classified
Information Systems not elsewhere classified
small sample size
lr &# 8211
evaluated using 5
assisted reproductive technologies
artificial bee colony
art ), yet
address class imbalance
support vector machine
pharmaceutical supplement use
enhance predictive performance
abc hybrids outperformed
abc hybrid counterparts
local interpretable model
abc hybrid model
model performance
supplement variables
producing interpretable
dietician support
vitro fertilization
synthetic minority
studies rely
sampling technique
retrospective dataset
regression tree
random forest
observed improvements
nearest neighbors
limited optimization
influential features
individual predictions
improving prediction
implemented alongside
future studies
four algorithms
folic acid
fold cross
exploratory rather
dietary data
conventional algorithms
concept study
clinically directive
binary representation
baseline models
algorithm models
agnostic explanations
accuracy ).
21 predictors