Machine Learning-Driven Cross-Species Toxicity Prediction for Advancing Ecologically Relevant PFAS Water Quality Criteria

Traditional toxicity testing cannot keep pace with the rapid growth of synthetic chemicals, creating major data gaps that hinder the development of water quality criteria (WQC) for emerging contaminants. This study developed a machine learning model integrating compound- and organism-related feature...

Description complète

Enregistré dans:
Détails bibliographiques
Auteur principal: Weigang Liang (734333) (author)
Autres auteurs: Jingya Li (309241) (author), Xiaolei Wang (139592) (author), John P. Giesy (302766) (author), Xiaoli Zhao (118708) (author)
Publié: 2025
Sujets:
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!

Documents similaires